Instance Based Learning

[Read Ch. 8]

- k-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning
Instance-Based Learning

Key idea: just store all training examples \(\langle x_i, f(x_i) \rangle \)

Nearest neighbor:

- Given query instance \(x_q \), first locate nearest training example \(x_n \), then estimate
 \[
 \hat{f}(x_q) \leftarrow f(x_n)
 \]

\(k \)-Nearest neighbor:

- Given \(x_q \), take vote among its \(k \) nearest nbrs (if discrete-valued target function)
- take mean of \(f \) values of \(k \) nearest nbrs (if real-valued)
 \[
 \hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_i)}{k}
 \]
When To Consider Nearest Neighbor

- Instances map to points in \mathbb{R}^n
- Less than 20 attributes per instance
- Lots of training data

Advantages:
- Training is very fast
- Learn complex target functions
- Don’t lose information

Disadvantages:
- Slow at query time
- Easily fooled by irrelevant attributes
Voronoi Diagram
Behavior in the Limit

Consider $p(x)$ defines probability that instance x will be labeled 1 (positive) versus 0 (negative).

Nearest neighbor:

- As number of training examples $\to \infty$, approaches Gibbs Algorithm

 Gibbs: with probability $p(x)$ predict 1, else 0

k-Nearest neighbor:

- As number of training examples $\to \infty$ and k gets large, approaches Bayes optimal

 Bayes optimal: if $p(x) > .5$ then predict 1, else 0

Note Gibbs has at most twice the expected error of Bayes optimal
Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Note now it makes sense to use all training examples instead of just k

→ Shepard’s method
Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function.

Curse of dimensionality: nearest nbr is easily mislead when high-dimensional X

One approach:

- Stretch jth axis by weight z_j, where z_1, \ldots, z_n chosen to minimize prediction error.
- Use cross-validation to automatically choose weights z_1, \ldots, z_n.
- Note setting z_j to zero eliminates this dimension altogether.

see [Moore and Lee, 1994]
Locally Weighted Regression

Note kNN forms local approximation to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q

 - Fit linear function to k nearest neighbors
 - Fit quadratic, ...
 - Produces “piecewise approximation” to f

Several choices of error to minimize:

 - Squared error over k nearest neighbors
 \[
 E_1(x_q) \equiv \frac{1}{2} \sum_{x \in \text{k nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2
 \]
 - Distance-weighted squared error over all nbrs
 \[
 E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))
 \]
Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but “eager” instead of “lazy”
Radial Basis Function Networks

where $a_i(x)$ are the attributes describing instance x, and

$$f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x))$$

One common choice for $K_u(d(x_u, x))$ is

$$K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u, x)}$$
Training Radial Basis Function Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$

- Scatter uniformly throughout instance space
- Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian K_u)

- First choose variance (and perhaps mean) for each K_u
 - e.g., use EM
- Then hold K_u fixed, and train linear output layer
 - efficient methods to fit linear function
Case-Based Reasoning

Can apply instance-based learning even when $X \neq \mathbb{R}^n$

\rightarrow need different “distance” metric

Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions

((user-complaint error53-on-shutdown)
 (cpu-model PowerPC)
 (operating-system Windows)
 (network-connection PCIA)
 (memory 48meg)
 (installed-applications Excel Netscape VirusScan)
 (disk 1gig)
 (likely-cause ???))
Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices

- each training example: \{ qualitative function, mechanical structure \}
- new query: desired function,
- target value: mechanical structure for this function

Distance metric: match qualitative function descriptions
Case-Based Reasoning in CADET

A stored case: T–junction pipe

Structure:

\[Q_1, T_1 \]
\[\downarrow \]
\[Q_2, T_2 \]
\[\rightarrow \]
\[Q_3, T_3 \]

Function:

\[Q \rightarrow Q_1 \]
\[\rightarrow + \]
\[Q \rightarrow Q_3 \]

\[T \rightarrow T_1 \]
\[\rightarrow + \]
\[T \rightarrow T_3 \]

A problem specification: Water faucet

Structure:

\?

Function:

\[C_i \rightarrow Q_c \]
\[\rightarrow + \]
\[C_f \rightarrow Q_c \]

\[T \rightarrow T_c \]
\[\rightarrow + \]
\[T \rightarrow T_h \]

\[Q \rightarrow Q_m \]

\[T \rightarrow T_m \]
Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:

- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research
Lazy and Eager Learning

Lazy: wait for query before generalizing
 - \textit{k}-Nearest Neighbor, Case based reasoning

Eager: generalize before seeing query
 - Radial basis function networks, ID3,
 Backpropagation, NaiveBayes, ...

Does it matter?
 - Eager learner must create global approximation
 - Lazy learner can create many local approximations
 - if they use same H, lazy can represent more complex fns (e.g., consider $H = \text{linear functions}$)