Natural Language Processing
with Deep Learning
CS224N/Ling284

Christopher Manning
Lecture 3: Word Window Classification, Neural Networks, and Matrix Calculus
2. Classification setup and notation

• Generally we have a training dataset consisting of samples

\[\{x_i, y_i\}_{i=1}^{N} \]

• \(x_i \) are inputs, e.g. words (indices or vectors!), sentences, documents, etc.
 • Dimension \(d \)

• \(y_i \) are labels (one of \(C \) classes) we try to predict, for example:
 • classes: sentiment, named entities, buy/sell decision
 • other words
 • later: multi-word sequences
Classification intuition

- Training data: \(\{x_i, y_i\}_{i=1}^N \)

- Simple illustration case:
 - Fixed 2D word vectors to classify
 - Using softmax/logistic regression
 - Linear decision boundary

- **Traditional ML/Stats approach:** assume \(x_i \) are fixed, train (i.e., set) softmax/logistic regression weights \(W \in \mathbb{R}^{C \times d} \) to determine a decision boundary (hyperplane) as in the picture

- **Method:** For each \(x \), predict:

\[
p(y|x) = \frac{\exp(W_{y,x})}{\sum_{c=1}^{C} \exp(W_{c,x})}
\]
Details of the softmax classifier

\[p(y|x) = \frac{\exp(W_y . x)}{\sum_{c=1}^{C} \exp(W_c . x)} \]

We can tease apart the prediction function into two steps:

1. Take the \(y^{\text{th}} \) row of \(W \) and multiply that row with \(x \):

 \[W_y . x = \sum_{i=1}^{d} W_{yi} x_i = f_y \]

 Compute all \(f_c \) for \(c = 1, \ldots, C \)

2. Apply softmax function to get normalized probability:

 \[p(y|x) = \frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)} = \text{softmax}(f_y) \]
Training with softmax and cross-entropy loss

• For each training example \((x, y)\), our objective is to maximize the probability of the correct class \(y\)

• Or we can minimize the negative log probability of that class:

\[- \log p(y|x) = - \log \left(\frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)} \right)\]
Background: What is “cross entropy” loss/error?

- Concept of “cross entropy” is from information theory
- Let the true probability distribution be \(p \)
- Let our computed model probability be \(q \)
- The cross entropy is:

\[
H(p, q) = - \sum_{c=1}^{C} p(c) \log q(c)
\]

- Assuming a ground truth (or true or gold or target) probability distribution that is 1 at the right class and 0 everywhere else: \(p = [0,...,0,1,0,...0] \) then:
- **Because of one-hot \(p \), the only term left is the negative log probability of the true class**
Classification over a full dataset

• Cross entropy loss function over full dataset \{x_i, y_i\}_{i=1}^N

\[
J(\theta) = \frac{1}{N} \sum_{i=1}^{N} - \log \left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_c}} \right)
\]

• Instead of

\[
f_y = f_y(x) = W_y.x = \sum_{j=1}^{d} W_{yj}x_j
\]

We will write \(f\) in matrix notation:

\[
f = Wx
\]
Traditional ML optimization

- For general machine learning θ usually only consists of columns of W:

\[
\theta = \begin{bmatrix}
W.1 \\
\vdots \\
W.d
\end{bmatrix} = W(,:) \in \mathbb{R}^{Cd}
\]

- So we only update the decision boundary via

\[
\nabla_{\theta} J(\theta) = \begin{bmatrix}
\nabla W.1 \\
\vdots \\
\nabla W.d
\end{bmatrix} \in \mathbb{R}^{Cd}
\]

Visualizations with ConvNetJS by Karpathy
3. Neural Network Classifiers

- Softmax (≈ logistic regression) alone not very powerful
- Softmax gives only linear decision boundaries

This can be quite limiting

→ Unhelpful when a problem is complex

Wouldn’t it be cool to get these correct?
Neural Nets for the Win!

- Neural networks can learn much more complex functions and nonlinear decision boundaries!
 - In original space
Classification difference with word vectors

- Commonly in NLP deep learning:
 - We learn **both** W and word vectors x
 - We learn **both** conventional parameters and representations
 - The word vectors re-represent one-hot vectors—move them around in an intermediate layer vector space—for easy classification with a (linear) softmax classifier via layer $x = L e$

\[
\nabla_{\theta} J(\theta) = \begin{bmatrix}
\nabla_{W_1} & \\
\vdots & \\
\nabla_{W_d} & \\
\n\nabla_{x_{\text{aardvark}}} & \\
\vdots & \\
\n\nabla_{x_{\text{zebra}}} & \\
\end{bmatrix} \in \mathbb{R}^{C_d + V d}
\]
Neural computation
An artificial neuron

- Neural networks come with their own terminological baggage
- But if you understand how softmax models work, then you can easily understand the operation of a neuron!
A neuron can be a binary logistic regression unit

\[f = \text{nonlinear activation fct. (e.g. sigmoid)}, \ w = \text{weights}, \ b = \text{bias}, \ h = \text{hidden}, \ x = \text{inputs} \]

\[h_{w,b}(x) = f(w^T x + b) \]

\[f(z) = \frac{1}{1 + e^{-z}} \]

b: We can have an “always on” feature, which gives a class prior, or separate it out, as a bias term

\[w, b \text{ are the parameters of this neuron i.e., this logistic regression model} \]
A neural network
= running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression functions, then we get a vector of outputs ...

But we don’t have to decide ahead of time what variables these logistic regressions are trying to predict!
A neural network = running several logistic regressions at the same time

... which we can feed into another logistic regression function

It is the loss function that will direct what the intermediate hidden variables should be, so as to do a good job at predicting the targets for the next layer, etc.
A neural network
= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....
Matrix notation for a layer

We have

\[a_1 = f(W_{11}x_1 + W_{12}x_2 + W_{13}x_3 + b_1) \]
\[a_2 = f(W_{21}x_1 + W_{22}x_2 + W_{23}x_3 + b_2) \]

etc.

In matrix notation

\[z = Wx + b \]
\[a = f(z) \]

Activation \(f \) is applied element-wise:

\[f([z_1, z_2, z_3]) = [f(z_1), f(z_2), f(z_3)] \]
Non-linearities (aka “f”): Why they’re needed

• Example: function approximation, e.g., regression or classification
 • Without non-linearities, deep neural networks can’t do anything more than a linear transform
 • Extra layers could just be compiled down into a single linear transform: $W_1 W_2 x = Wx$
 • With more layers, they can approximate more complex functions!
4. Named Entity Recognition (NER)

- The task: find and classify names in text, for example:

 The **European Commission** [ORG] said on Thursday it disagreed with **German** [MISC] advice.

 Only **France** [LOC] and **Britain** [LOC] backed **Fischler** [PER] 's proposal.

 “What we have to be extremely careful of is how other countries are going to take Germany 's lead”, **Welsh National Farmers ' Union** [ORG] (**NFU** [ORG]) chairman **John Lloyd Jones** [PER] said on **BBC** [ORG] radio.

- Possible purposes:
 - Tracking mentions of particular entities in documents
 - For question answering, answers are usually named entities
 - A lot of wanted information is really associations between named entities
 - The same techniques can be extended to other slot-filling classifications
 - Often followed by Named Entity Linking/Canonicalization into Knowledge Base
Named Entity Recognition on word sequences

We predict entities by classifying words in context and then extracting entities as word subsequences.

- Foreign: ORG
- Ministry: ORG
- spokesman: O
- Shen: PER
- Guofang: PER
- told: O
- Reuters: ORG
- that: O
- : :

👉 BIO encoding
Why might NER be hard?

• Hard to work out boundaries of entity

First National Bank Donates 2 Vans To Future School Of Fort Smith

Is the first entity “First National Bank” or “National Bank”

• Hard to know if something is an entity

Is there a school called “Future School” or is it a future school?

• Hard to know class of unknown/novel entity:

To find out more about Zig Ziglar and read features by other Creators Syndicate writers and

What class is “Zig Ziglar”? (A person.)

• Entity class is ambiguous and depends on context

“Charles Schwab” is PER not ORG here! Where Larry Ellison and Charles Schwab can

live discreetly amongst wooded estates. And
5. Binary word window classification

- In general, classifying single words is rarely done

- Interesting problems like ambiguity arise in context!

- Example: auto-antonyms:
 - "To sanction" can mean "to permit" or "to punish"
 - "To seed" can mean "to place seeds" or "to remove seeds"

- Example: resolving linking of ambiguous named entities:
 - Paris \(\rightarrow \) Paris, France vs. Paris Hilton vs. Paris, Texas
 - Hathaway \(\rightarrow \) Berkshire Hathaway vs. Anne Hathaway
Window classification

• **Idea**: classify a word in its context window of neighboring words.

• For example, **Named Entity Classification** of a word in context:
 • Person, Location, Organization, None

• A simple way to classify a word in context might be to **average** the word vectors in a window and to classify the average vector
 • Problem: that would **lose position information**
Window classification: Softmax

• Train softmax classifier to classify a center word by taking concatenation of word vectors surrounding it in a window

• Example: Classify “Paris” in the context of this sentence with window length 2:

\[
\begin{align*}
\text{... museums in Paris are amazing} \\
x_{\text{window}} &= [x_{\text{museums}} \quad x_{\text{in}} \quad x_{\text{Paris}} \quad x_{\text{are}} \quad x_{\text{amazing}}]^T
\end{align*}
\]

• Resulting vector \(x_{\text{window}} = x \in \mathbb{R}^{5d} \), a column vector!
Simplest window classifier: Softmax

- With $x = x_{\text{window}}$ we can use the same softmax classifier as before

$$\hat{y}_y = p(y|x) = \frac{\exp(W_y.x)}{\sum_{c=1}^{C} \exp(W_c.x)}$$

- With cross entropy error as before:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} - \log \left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_{c}}} \right)$$

- How do you update the word vectors?
- Short answer: Just take derivatives like last week and optimize
Binary classification with unnormalized scores

Method used by Collobert & Weston (2008, 2011)
 • Just recently won ICML 2018 Test of time award

• For our previous example:
 \[X_{\text{window}} = [x_{\text{museums}} \ x_{\text{in}} \ x_{\text{Paris}} \ x_{\text{are}} \ x_{\text{amazing}}] \]

• Assume we want to classify whether the center word is a Location

• Similar to word2vec, we will go over all positions in a corpus. But this time, it will be supervised and only some positions should get a high score.

• E.g., the positions that have an actual NER Location in their center are “true” positions and get a high score
Binary classification for NER Location

• Example: *Not all museums in Paris are amazing.*

• Here: one true window, the one with Paris in its center and all other windows are “corrupt” in terms of not having a named entity location in their center.

 museums in Paris are amazing

• “Corrupt“ windows are easy to find and there are many: Any window whose center word isn’t specifically labeled as NER location in our corpus

 Not all museums in Paris
Neural Network Feed-forward Computation

Use neural activation a simply to give an unnormalized score

$$\text{score}(x) = U^T a \in \mathbb{R}$$

We compute a window’s score with a 3-layer neural net:

- $s = \text{score}("\text{museums in Paris are amazing}")$

$$s = U^T f(Wx + b)$$

$x \in \mathbb{R}^{20 \times 1}, W \in \mathbb{R}^{8 \times 20}, U \in \mathbb{R}^{8 \times 1}$

$x_{\text{window}} = \begin{bmatrix} x_{\text{museums}} & x_{\text{in}} & x_{\text{Paris}} & x_{\text{are}} & x_{\text{amazing}} \end{bmatrix}$

$s = U^T a$

$a = f(z)$

$z = Wx + b$
Main intuition for extra layer

The middle layer learns non-linear interactions between the input word vectors.

Example: only if “museums” is first vector should it matter that “in” is in the second position.
The max-margin loss

- **Idea for training objective**: Make true window’s score larger and corrupt window’s score lower (until they’re good enough)
- \[s = \text{score(} \text{museums in Paris are amazing}\text{)} \]
- \[s_c = \text{score(} \text{Not all museums in Paris}\text{)} \]
- Minimize

\[
J = \max(0, 1 - s + s_c)
\]

- This is not differentiable but it is continuous \(\rightarrow\) we can use SGD.

Each option is continuous
Max-margin loss

- Objective for a single window:
 \[J = \max(0, 1 - s + s_c) \]

- Each window with an NER location at its center should have a score +1 higher than any window without a location at its center

- For full objective function: Sample several corrupt windows per true one. Sum over all training windows.

- Similar to negative sampling in word2vec
Simple net for score

\[s = u^T h \]

\[h = f(Wx + b) \]

\(x \) (input)

\[x = [x_{\text{museums}}, x_{\text{in}}, x_{\text{paris}}, x_{\text{are}}, x_{\text{amazing}}] \]
Remember: Stochastic Gradient Descent

• Update equation:

\[\theta_{new} = \theta_{old} - \alpha \nabla_{\theta} J(\theta) \]

\[\alpha = \text{step size or learning rate} \]

• How do we compute \(\nabla_{\theta} J(\theta) \)?
 • By hand (this lecture)
 • Algorithmically: the backpropagation algorithm (next lecture)
Computing Gradients by Hand

• Review of multivariable derivatives

• Matrix calculus: Fully vectorized gradients
 • Much faster and more useful than non-vectorized gradients
 • But doing a non-vectorized gradient can be good practice; watch last week’s lecture for an example
 • Lecture notes cover this material in more detail
Gradients

• Given a function with 1 output and 1 input

 \[f(x) = x^3 \]

• Its gradient (slope) is its derivative

 \[\frac{df}{dx} = 3x^2 \]
Gradients

• Given a function with 1 output and n inputs

$$f(\mathbf{x}) = f(x_1, x_2, \ldots, x_n)$$

• It’s gradient is a vector of partial derivatives with respect to each input

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1}, & \frac{\partial f}{\partial x_2}, & \ldots, & \frac{\partial f}{\partial x_n} \end{bmatrix}$$
Jacobian Matrix: Generalization of the Gradient

• Given a function with \textbf{m outputs} and \textit{n inputs}

\[f(x) = [f_1(x_1, x_2, ..., x_n), ..., f_m(x_1, x_2, ..., x_n)] \]

• It’s Jacobian is an \textbf{m x n matrix} of partial derivatives

\[
\frac{\partial f}{\partial x} = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix}
\]

\[
\left(\frac{\partial f}{\partial x} \right)_{ij} = \frac{\partial f_i}{\partial x_j}
\]
Chain Rule

• For one-variable functions: multiply derivatives
 \[z = 3y \]
 \[y = x^2 \]
 \[\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = (3)(2x) = 6x \]

• For multiple variables at once: multiply Jacobians
 \[h = f(z) \]
 \[z = Wx + b \]
 \[\frac{\partial h}{\partial x} = \frac{\partial h}{\partial z} \frac{\partial z}{\partial x} = \ldots \]
Example Jacobian: Elementwise activation Function

\[h = f(z), \text{ what is } \frac{\partial h}{\partial z} ? \quad h, z \in \mathbb{R}^n \]

\[h_i = f(z_i) \]
Example Jacobian: Elementwise activation Function

\[h = f(z), \text{ what is } \frac{\partial h}{\partial z}? \]

\[h_i = f(z_i) \]

Function has \(n \) outputs and \(n \) inputs \(\rightarrow \) \(n \) by \(n \) Jacobian

\(h, z \in \mathbb{R}^n \)
Example Jacobian: Elementwise activation Function

\[h = f(z), \text{ what is } \frac{\partial h}{\partial z} ? \]
\[h_i = f(z_i) \]
\[\left(\frac{\partial h}{\partial z} \right)_{i,j} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i) \]

\[h, z \in \mathbb{R}^n \]

definition of Jacobian
Example Jacobian: Elementwise activation Function

\[h = f(z), \text{ what is } \frac{\partial h}{\partial z} ? \]
\[h_i = f(z_i) \]

\[
\left(\frac{\partial h}{\partial z} \right)_{i,j} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i)
\]

\[= \begin{cases}
 f'(z_i) & \text{if } i = j \\
 0 & \text{if otherwise}
\end{cases} \]

definition of Jacobian

regular 1-variable derivative
Example Jacobian: Elementwise activation Function

\[h = f(z), \text{ what is } \frac{\partial h}{\partial z} ? \]

\[h_i = f(z_i) \]

\[
\left(\frac{\partial h}{\partial z} \right)_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i) \]

\[
= \begin{cases}
 f'(z_i) & \text{if } i = j \\
 0 & \text{if otherwise}
\end{cases}
\]

definition of Jacobian

regular 1-variable derivative

\[
\frac{\partial h}{\partial z} = \begin{pmatrix}
 f'(z_1) & 0 \\
 0 & \ddots \\
 0 & \cdots & f'(z_n)
\end{pmatrix} = \text{diag}(f'(z))
\]
Other Jacobians

\[\frac{\partial}{\partial x} (Wx + b) = W \]
Other Jacobians

\[
\frac{\partial}{\partial x} (Wx + b) = W \\
\frac{\partial}{\partial b} (Wx + b) = I \quad \text{(Identity matrix)}
\]
Other Jacobians

\[\frac{\partial}{\partial x} (Wx + b) = W \]

\[\frac{\partial}{\partial b} (Wx + b) = I \quad \text{(Identity matrix)} \]

\[\frac{\partial}{\partial u} (u^T h) = h^T \]

Fine print: This is the correct Jacobian. Later we discuss the “shape convention”; using it the answer would be \(h \).
Other Jacobians

\[
\frac{\partial}{\partial x} (Wx + b) = W
\]

\[
\frac{\partial}{\partial b} (Wx + b) = I \quad \text{(Identity matrix)}
\]

\[
\frac{\partial}{\partial u} (u^T h) = h^T
\]

- Compute these at home for practice!
 - Check your answers with the lecture notes
Back to our Neural Net!

\[s = u^T h \]

\[h = f(Wx + b) \]

\[x \quad \text{(input)} \]

\[x = [\text{x_{museums}} \quad \text{x_{in}} \quad \text{x_{Paris}} \quad \text{x_{are}} \quad \text{x_{amazing}}] \]
Back to our Neural Net!

- Let's find $\frac{\partial s}{\partial b}$
- In practice we care about the gradient of the loss, but we will compute the gradient of the score for simplicity

\[
s = u^T h
\]

\[
h = f(Wx + b)
\]

x (input) $= [x_{\text{museums}} \ x_{\text{in}} \ x_{\text{Paris}} \ x_{\text{are}} \ x_{\text{amazing}}]$
1. Break up equations into simple pieces

\[s = u^T h \]

\[h = f(Wx + b) \]

\[x \text{ (input)} \]

\[s = u^T h \]

\[h = f(z) \]

\[z = Wx + b \]

\[x \text{ (input)} \]
2. Apply the chain rule

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \text{ (input)} \]
2. Apply the chain rule

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \quad \text{(input)} \]
2. Apply the chain rule

\[s = u^T h \]

\[h = f(z) \]

\[z = Wx + b \]

\[x \text{ (input)} \]

\[\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b} \]
2. Apply the chain rule

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \quad (\text{input}) \]

\[
\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b}
\]
3. Write out the Jacobians

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \quad (\text{input}) \]

Useful Jacobians from previous slide

\[\frac{\partial}{\partial u} (u^T h) = h^T \]
\[\frac{\partial}{\partial z} (f(z)) = \text{diag}(f'(z)) \]
\[\frac{\partial}{\partial b} (Wx + b) = I \]
3. Write out the Jacobians

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \text{ (input)} \]

Useful Jacobians from previous slide

\[\frac{\partial}{\partial u} (u^T h) = h^T \]
\[\frac{\partial}{\partial z} (f(z)) = \text{diag}(f'(z)) \]
\[\frac{\partial}{\partial b} (Wx + b) = I \]
3. Write out the Jacobians

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \text{ (input)} \]

Useful Jacobians from previous slide

\[\frac{\partial}{\partial u} (u^T h) = h^T \]
\[\frac{\partial}{\partial z} (f(z)) = \text{diag}(f'(z)) \]
\[\frac{\partial}{\partial b} (Wx + b) = I \]
3. Write out the Jacobians

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \text{ (input)} \]

\[
\begin{align*}
\frac{\partial s}{\partial b} &= \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b} \\
&= u^T \text{diag}(f'(z))I
\end{align*}
\]

Useful Jacobians from previous slide

\[
\begin{align*}
\frac{\partial}{\partial u}(u^T h) &= h^T \\
\frac{\partial}{\partial z}(f(z)) &= \text{diag}(f'(z)) \\
\frac{\partial}{\partial b}(Wx + b) &= I
\end{align*}
\]
3. Write out the Jacobians

\[s = u^T h \]
\[h = f(z) \]
\[z = W x + b \]
\[x \text{ (input)} \]

Useful Jacobians from previous slide

\[\frac{\partial}{\partial u} (u^T h) = h^T \]
\[\frac{\partial}{\partial z} (f(z)) = \text{diag}(f'(z)) \]
\[\frac{\partial}{\partial b} (W x + b) = I \]
Re-using Computation

• Suppose we now want to compute $\frac{\partial s}{\partial W}$
 • Using the chain rule again:

$$\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}$$
Re-using Computation

• Suppose we now want to compute \(\frac{\partial s}{\partial W} \)

• Using the chain rule again:

\[
\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}
\]

\[
\frac{\partial s}{\partial b} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b}
\]

The same! Let’s avoid duplicated computation...
Re-using Computation

• Suppose we now want to compute \(\frac{\partial s}{\partial W} \)

• Using the chain rule again:

\[
\frac{\partial s}{\partial W} = \delta \frac{\partial z}{\partial W} \\
\frac{\partial s}{\partial b} = \delta \frac{\partial z}{\partial b} = \delta \\
\delta = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} = u^T \circ f'(z)
\]

\(\delta \) is local error signal
Derivative with respect to Matrix: Output shape

- What does $\frac{\partial s}{\partial W}$ look like? $W \in \mathbb{R}^{n \times m}$
- 1 output, nm inputs: 1 by nm Jacobian?
 - Inconvenient to do $\theta_{\text{new}} = \theta_{\text{old}} - \alpha \nabla_{\theta} J(\theta)$
Derivative with respect to Matrix: Output shape

- What does $\frac{\partial s}{\partial W}$ look like? $W \in \mathbb{R}^{n \times m}$
- 1 output, nm inputs: 1 by nm Jacobian?
 - Inconvenient to do
 \[\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta) \]
 - Instead follow convention: shape of the gradient is shape of parameters
 - So $\frac{\partial s}{\partial W}$ is n by m:
Derivative with respect to Matrix

- Remember \(\frac{\partial s}{\partial W} = \delta \frac{\partial z}{\partial W} \)
 - \(\delta \) is going to be in our answer
 - The other term should be \(x \) because \(z = Wx + b \)

- It turns out \(\frac{\partial s}{\partial W} = \delta^T x^T \)

\(\delta \) is local error signal at \(z \)
\(x \) is local input signal
Why the Transposes?

\[\frac{\partial s}{\partial W} = \delta^T x^T \]

\[[n \times m] [n \times 1][1 \times m] \]

• Hacky answer: this makes the dimensions work out!
 • Useful trick for checking your work!

• Full explanation in the lecture notes
 • Each input goes to each output – you get outer product
Why the Transposes?

\[
\frac{\partial s}{\partial W} = \delta^T x^T = \begin{bmatrix} \delta_1 \\ \vdots \\ \delta_n \end{bmatrix} [x_1, \ldots, x_m] = \begin{bmatrix} \delta_1 x_1 & \cdots & \delta_1 x_m \\ \vdots & \ddots & \vdots \\ \delta_n x_1 & \cdots & \delta_n x_m \end{bmatrix}
\]
What shape should derivatives be?

\[\frac{\partial s}{\partial b} = h^T \circ f'(z) \]

- is a row vector
 - But convention says our gradient should be a column vector because \(b \) is a column vector...

- Disagreement between Jacobian form (which makes the chain rule easy) and the shape convention (which makes implementing SGD easy)
 - We expect answers to follow the shape convention
 - But Jacobian form is useful for computing the answers
What shape should derivatives be?

Two options:

1. Use Jacobian form as much as possible, reshape to follow the convention at the end:
 - What we just did. But at the end transpose $\frac{\partial s}{\partial b}$ to make the derivative a column vector, resulting in δ^T.

2. Always follow the convention
 - Look at dimensions to figure out when to transpose and/or reorder terms.
Next time: Backpropagation

Backpropagation

• Computing gradients algorithmically and efficiently
• Converting what we just did by hand into an algorithm
• Used by deep learning software frameworks (TensorFlow, PyTorch, Chainer, etc.)
1. Derivative wrt a weight matrix

- Let’s look carefully at computing $\frac{\partial s}{\partial W}$.
- Using the chain rule again:

$$\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}$$

$s = u^T h$

$h = f(z)$

$z = Wx + b$

$x = [x_{museums}, x_{in}, x_{Paris}, x_{are}, x_{amazing}]$
Deriving gradients for backprop

• For this function (following on from last time):

\[\frac{\partial s}{\partial W} = \delta \frac{\partial z}{\partial W} = \delta \frac{\partial}{\partial W} Wx + b \]

• Let’s consider the derivative of a single weight \(W_{ij} \)

• \(W_{ij} \) only contributes to \(z_i \)

• For example: \(W_{23} \) is only used to compute \(z_2 \) not \(z_1 \)

\[\frac{\partial z_i}{\partial W_{ij}} = \frac{\partial}{\partial W_{ij}} W_i.x + b_i = \frac{\partial}{\partial W_{ij}} \sum_{k=1}^{d} W_{ik} x_k = x_j \]
Deriving gradients for backprop

- So for derivative of single W_{ij}:
 \[
 \frac{\partial s}{\partial W_{ij}} = \delta_i x_j
 \]

- We want gradient for full \mathbf{W} – but each case is the same
- Overall answer: Outer product:
 \[
 \frac{\partial s}{\partial \mathbf{W}} = \delta^T \mathbf{x}^T
 \]

 \[
 [n \times m] \quad [n \times 1] [1 \times m]
 \]
Deriving gradients: Tips

• **Tip 1**: Carefully define your variables and keep track of their dimensionality!

• **Tip 2**: Chain rule! If $y = f(u)$ and $u = g(x)$, i.e., $y = f(g(x))$, then:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$$

Keep straight what variables feed into what computations

• **Tip 3**: For the top softmax part of a model: First consider the derivative wrt f_c when $c = y$ (the correct class), then consider derivative wrt f_c when $c \neq y$ (all the incorrect classes)

• **Tip 4**: Work out element-wise partial derivatives if you’re getting confused by matrix calculus!

• **Tip 5**: Use Shape Convention. Note: The error message δ that arrives at a hidden layer has the same dimensionality as that hidden layer
Deriving gradients wrt words for window model

• The gradient that arrives at and updates the word vectors can simply be split up for each word vector:
• Let $\nabla_x J = W^T \delta = \delta_{x_{\text{window}}}$
• With $x_{\text{window}} = [x_{\text{museums}} \ x_{\text{in}} \ x_{\text{Paris}} \ x_{\text{are}} \ x_{\text{amazing}}]$

• We have

\[
\delta_{\text{window}} = \begin{bmatrix}
\nabla x_{\text{museums}} \\
\nabla x_{\text{in}} \\
\nabla x_{\text{Paris}} \\
\nabla x_{\text{are}} \\
\nabla x_{\text{amazing}}
\end{bmatrix} \in \mathbb{R}^{5d}
\]
Updating word gradients in window model

• This will push word vectors around so that they will (in principle) be more helpful in determining named entities.

• For example, the model can learn that seeing x_{in} as the word just before the center word is indicative for the center word to be a location.
A pitfall when retraining word vectors

- **Setting:** We are training a logistic regression classification model for movie review sentiment using single words.
- In the **training data** we have “TV” and “telly”
- In the **testing data** we have “television”
- The *pre-trained* word vectors have all three similar:

Question: What happens when we update the word vectors?
A pitfall when retraining word vectors

- **Question:** What happens when we update the word vectors?
- **Answer:**
 - Those words that are **in** the training data **move around**
 - “TV” and “telly”
 - Words **not** in the training data **stay** where they were
 - “television”

This can be bad!
So what should I do?

- **Question:** Should I use available “pre-trained” word vectors
 - **Answer:**
 - Almost always, yes!
 - They are trained on a huge amount of data, and so they will know about words not in your training data and will know more about words that are in your training data
 - Have 100s of millions of words of data? Okay to start random

- **Question:** Should I update (“fine tune”) my own word vectors?
 - **Answer:**
 - If you only have a *small* training data set, *don’t* train the word vectors
 - If you have have a *large* dataset, it probably will work better to train = update = fine-tune word vectors to the task
Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized) chain rule

Other trick: we **re-use** derivatives computed for higher layers in computing derivatives for lower layers so as to minimize computation
2. Computation Graphs and Backpropagation

- We represent our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &= \text{(input)}
\end{align*}
\]
Computation Graphs and Backpropagation

- We represent our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations
 - Edges pass along result of the operation

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &\quad \text{(input)}
\end{align*}
\]
Computation Graphs and Backpropagation

• Representing our neural net equations as a graph

\[s = u^T h \]
\[h = f(z) \]
\[z = c + b \]

"Forward Propagation"

...
Backpropagation

- Go backwards along edges
 - Pass along gradients

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &\quad \text{(input)}
\end{align*}
\]
Backpropagation: Single Node

- Node receives an “upstream gradient”
- Goal is to pass on the correct “downstream gradient”:

$$h = f(z)$$

![Diagram of a single node in a neural network showing the flow of gradients.](image-url)
Backpropagation: Single Node

- Each node has a **local gradient**
- The gradient of it’s output with respect to it’s input

\[h = f(z) \]
Backpropagation: Single Node

- Each node has a **local gradient**
- The gradient of it’s output with respect to it’s input

\[h = f(z) \]
Backpropagation: Single Node

- Each node has a **local gradient**
 - The gradient of its output with respect to its input

- \([\text{downstream gradient}] = [\text{upstream gradient}] \times [\text{local gradient}]\)

\[
h = f(z)
\]
Backpropagation: Single Node

• What about nodes with multiple inputs?

\[z = Wx \]
Backpropagation: Single Node

- Multiple inputs \rightarrow multiple local gradients

$$z = Wx$$

\[
\frac{\partial s}{\partial W} = \frac{\partial s}{\partial z} \frac{\partial z}{\partial W}
\]
\[
\frac{\partial s}{\partial x} = \frac{\partial s}{\partial z} \frac{\partial z}{\partial x}
\]

Downstream gradients Local gradients Upstream gradient
An Example

\[
f(x, y, z) = (x + y) \max(y, z)
\]

\[
x = 1, y = 2, z = 0
\]
An Example

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]
An Example

Forward prop steps

\[a = x + y \]
\[b = \text{max}(y, z) \]
\[f = ab \]

\[
f(x, y, z) = (x + y) \text{max}(y, z)
\]
\[
x = 1, y = 2, z = 0
\]
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[
\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \\
\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0
\]

\[
f(x, y, z) = (x + y) \max(y, z)
\]
\[
x = 1, y = 2, z = 0
\]
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]
\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[
\begin{align*}
\frac{\partial a}{\partial x} &= 1 & &\frac{\partial a}{\partial y} &= 1 \\
\frac{\partial b}{\partial y} &= \mathbf{1}(y > z) = 1 & &\frac{\partial b}{\partial z} &= \mathbf{1}(z > y) = 0 \\
\frac{\partial f}{\partial a} &= b = 2 & &\frac{\partial f}{\partial b} &= a = 3
\end{align*}
\]

\[
f(x, y, z) = (x + y) \max(y, z)
\]

\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]
\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

upstream * local = downstream
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[
\begin{align*}
\frac{\partial a}{\partial x} &= 1 & \frac{\partial a}{\partial y} &= 1 \\
\frac{\partial b}{\partial y} &= \mathbf{1}(y > z) = 1 & \frac{\partial b}{\partial z} &= \mathbf{1}(z > y) = 0 \\
\frac{\partial f}{\partial a} &= b = 2 & \frac{\partial f}{\partial b} &= a = 3
\end{align*}
\]

\[
\begin{align*}
\mathbf{1}(y > z) &= \text{1 if } y > z \\
\mathbf{1}(z > y) &= \text{1 if } z > y
\end{align*}
\]

Graph:

\[
\begin{align*}
f(x, y, z) &= (x + y) \max(y, z) \\
x &= 1, y = 2, z = 0
\end{align*}
\]

upstream * local = downstream
An Example

Forward prop steps

\[a = x + y \]
\[b = \text{max}(y, z) \]
\[f = ab \]

Local gradients

\[
\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1
\]
\[
\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0
\]
\[
\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3
\]
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]

\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]

\[x = 1, y = 2, z = 0 \]

\[\frac{\partial f}{\partial x} = 2 \]

\[\frac{\partial f}{\partial y} = 3 + 2 = 5 \]

\[\frac{\partial f}{\partial z} = 0 \]
Gradients sum at outward branches
Gradients sum at outward branches

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

\[
\frac{\partial f}{\partial y} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial y} + \frac{\partial f}{\partial b} \frac{\partial b}{\partial y}
\]
Node Intuitions

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

- + “distributes” the upstream gradient
Node Intuitions

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

- + “distributes” the upstream gradient to each summand
- \(\max \) “routes” the upstream gradient

```
x 1
2 2
y 2 2
3 3
z 0
0
0
```

\[1 \]
\[3 \]
\[2 \]
\[2 \]
\[3 \]
\[3 \]
\[6 \]
\[1 \]
Node Intuitions

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

- + “distributes” the upstream gradient
- max “routes” the upstream gradient
- * “switches” the upstream gradient
Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x & \text{ (input)}
\end{align*}
\]
Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$
 - Then independently compute $\frac{\partial s}{\partial W}$
 - Duplicated computation!

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &= \text{(input)}
\end{align*}
\]
Efficiency: compute all gradients at once

- Correct way:
 - Compute all the gradients at once
 - Analogous to using δ when we computed gradients by hand

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \quad \text{(input)} \]
1. **Fprop**: visit nodes in topological sort order
 - Compute value of node given predecessors
2. **Bprop**:
 - initialize output gradient = 1
 - visit nodes in reverse order:
 Compute gradient wrt each node using gradient wrt successors
 \[
 \{y_1, y_2, \ldots, y_n\} = \text{successors of } x
 \]
 \[
 \frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}
 \]

Done correctly, big O() complexity of fprop and bprop is **the same**

In general our nets have regular layer-structure
and so we can use matrices and Jacobians...
Automatic Differentiation

• The gradient computation can be automatically inferred from the symbolic expression of the fprop
• Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output
• Modern DL frameworks (Tensorflow, PyTorch, etc.) do backpropagation for you but mainly leave layer/node writer to hand-calculate the local derivative
class ComputationalGraph(object):
 # ...
 def forward(inputs):
 # 1. [pass inputs to input gates...]
 # 2. forward the computational graph:
 for gate in self.graph.nodes_topologically_sorted():
 gate.forward()
 return loss # the final gate in the graph outputs the loss
 def backward():
 for gate in reversed(self.graph.nodes_topologically_sorted()):
 gate.backward() # little piece of backprop (chain rule applied)
 return inputs_gradients
Implementation: forward/backward API

```
class MultiplyGate(object):
    def forward(x, y):
        z = x*y
        return z

    def backward(dz):
        # dx = ... #todo
        # dy = ... #todo
        return [dx, dy]
```

(x, y, z are scalars)
Implementation: forward/backward API

```
class MultiplyGate(object):
    def forward(x, y):
        z = x*y
        self.x = x  # must keep these around!
        self.y = y
        return z

    def backward(dz):
        dx = self.y * dz  # [dz/dx * dL/dz]
        dy = self.x * dz  # [dz/dy * dL/dz]
        return [dx, dy]
```
Gradient checking: Numeric Gradient

- For small $h \approx 1e-4$, $f'(x) \approx \frac{f(x + h) - f(x - h)}{2h}$
- Easy to implement correctly
- But approximate and very slow:
 - Have to recompute f for every parameter of our model
- Useful for checking your implementation
 - In the old days when we hand-wrote everything, it was key to do this everywhere.
 - Now much less needed, when throwing together layers
Summary

• We’ve mastered the core technology of neural nets!!!

• Backpropagation: recursively apply the chain rule along computation graph
 • \([\text{downstream gradient}] = [\text{upstream gradient}] \times [\text{local gradient}]\)

• Forward pass: compute results of operations and save intermediate values

• Backward pass: apply chain rule to compute gradients
Why learn all these details about gradients?

• Modern deep learning frameworks compute gradients for you
• But why take a class on compilers or systems when they are implemented for you?
 • Understanding what is going on under the hood is useful!
• Backpropagation doesn’t always work perfectly.
 • Understanding why is crucial for debugging and improving models
 • See Karpathy article (in syllabus):
 • https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
 • Example in future lecture: exploding and vanishing gradients
3. We have models with many params! Regularization!

- Really a full loss function in practice includes regularization over all parameters θ, e.g., L2 regularization:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} - \log \left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_c}} \right) + \lambda \sum_{k} \theta_k^2$$

- Regularization (largely) prevents overfitting when we have a lot of features (or later a very powerful/deep model, ++)

![Diagram](image)
“Vectorization”

• E.g., looping over word vectors versus concatenating them all into one large matrix and then multiplying the softmax weights with that matrix

```python
from numpy import random
N = 500  # number of windows to classify
d = 300  # dimensionality of each window
C = 5   # number of classes
W = random.rand(C,d)
wordvectors_list = [random.rand(d,1) for i in range(N)]
wordvectors_one_matrix = random.rand(d,N)

%timeit [W.dot(wordvectors_list[i]) for i in range(N)]
%timeit W.dot(wordvectors_one_matrix)
```

• 1000 loops, best of 3: 639 µs per loop
10000 loops, best of 3: 53.8 µs per loop
"Vectorization"

```python
from numpy import random
N = 500  # number of windows to classify
d = 300  # dimensionality of each window
C = 5    # number of classes
W = random.rand(C,d)
wordvectors_list = [random.rand(d,1) for i in range(N)]
wordvectors_one_matrix = random.rand(d,N)

timeit [W.dot(wordvectors_list[i]) for i in range(N)]
timeit W.dot(wordvectors_one_matrix)
```

- The (10x) faster method is using a C x N matrix
- Always try to use vectors and matrices rather than for loops!
- You should speed-test your code a lot too!!
- tl;dr: Matrices are awesome!!!
Non-linearities: The starting points

logistic ("sigmoid")

\[f(z) = \frac{1}{1 + \exp(-z)}. \]

tanh

\[f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}; \]

hard tanh

\[\text{HardTanh}(x) = \begin{cases}
-1 & \text{if } x < -1 \\
 x & \text{if } -1 \leq x \leq 1 \\
 1 & \text{if } x > 1
\end{cases} \]

Tanh is just a rescaled and shifted sigmoid (2 \(\times \) as steep, \([-1,1])

\[\tanh(z) = 2 \logistic(2z) - 1 \]

Both logistic and tanh are still used in particular uses, but are no longer the defaults for making deep networks.
Non-linearities: The new world order

ReLU (rectified linear unit) hard tanh
\[\text{rect}(z) = \max(z, 0) \]

- For building a feed-forward deep network, the first thing you should try is ReLU — it trains quickly and performs well due to good gradient backflow.
Parameter Initialization

• You normally must initialize weights to small random values
 • To avoid symmetries that prevent learning/specialization
• Initialize hidden layer biases to 0 and output (or reconstruction) biases to optimal value if weights were 0 (e.g., mean target or inverse sigmoid of mean target)
• Initialize all other weights \sim Uniform($-r, r$), with r chosen so numbers get neither too big or too small
• Xavier initialization has variance inversely proportional to fan-in n_{in} (previous layer size) and fan-out n_{out} (next layer size):

$$\text{Var}(W_i) = \frac{2}{n_{in} + n_{out}}$$
Optimizers

- Usually, plain SGD will work just fine
 - However, getting good results will often require hand-tuning the learning rate (next slide)
- For more complex nets and situations, or just to avoid worry, you often do better with one of a family of more sophisticated “adaptive” optimizers that scale the parameter adjustment by an accumulated gradient.
 - These models give per-parameter learning rates
 - Adagrad
 - RMSprop
 - Adam ← A fairly good, safe place to begin in many cases
 - SparseAdam
 - ...
Learning Rates

- You can just use a constant learning rate. Start around $lr = 0.001$?
 - It must be order of magnitude right – try powers of 10
 - Too big: model may diverge or not converge
 - Too small: your model may not have trained by the deadline
- Better results can generally be obtained by allowing learning rates to decrease as you train
 - By hand: halve the learning rate every k epochs
 - An epoch = a pass through the data (shuffled or sampled)
 - By a formula: $lr = lr_0 e^{-kt}$, for epoch t
- There are fancier methods like cyclic learning rates (q.v.)
- Fancier optimizers still use a learning rate but it may be an initial rate that the optimizer shrinks – so may be able to start high