Insertion Order matters

- Difference between these binary search trees?
 - Insert: 4, 2, 1, 3, 6, 5, 7
 - Insert: 1, 2, 3, 4, 5, 6, 7

Self-balancing Trees

- Variants of binary search tree
- Self-balancing
 - Additional rules for how to structure tree
 - Needs operations to move nodes around
- Constraints on height differences of leaves
- Ensures that tree does not degenerate to list

Complexity of Operations

- Lookup Time
 - Balanced tree: $O(\log n)$
 - Unbalanced tree: $O(n)$
- Insertion time
 - Balanced tree: $O(\log n)$
 - Unbalanced tree: $O(n)$
- Balance does matter for efficient trees.
AVL Tree

- What is AVL tree?
 - A self-balancing binary search tree
 - Adelson-Velskii and Landis' tree, named after the inventors
 - For every node \(v \) of tree \(T \), the heights of the children of \(v \) differ by at most 1.
 - Height: \(O(\log n) \)

Insertion

- Insertion is as in a binary search tree.

Restructuring

- Single Rotation:
 - \(T_0 \)
 - \(T_1 \)
 - \(T_2 \)
 - \(T_3 \)
 - single rotation
 - \(a = x \)
 - \(b = y \)
 - \(c = z \)
Restructuring

- Double rotations:

 \[
 \begin{align*}
 &a = z \\
 &b = x \\
 &c = y \\
 &\text{double rotation}
 \\
 &a = y \\
 &b = z \\
 &c = x \\
 &\text{double rotation}
 \\
 &a = z \\
 &b = x \\
 &c = y
 \end{align*}
 \]

Insertion Example

Example 10

After insertion unbalanced

Before deletion of 32

After deletion: unbalanced

Removal

Reconstructing after a Removal

- Node definition

 - \(z \): the first unbalanced node encountered while travelling up the tree from the violating node \(w \)
 - \(y \): the child of \(z \) with the larger height
 - \(x \): the child of \(y \) with the larger height
Reconstructing after a Removal

- Recursive reconstructing
 - Restructuring may upset the balance of another node higher in the tree.
 - We must continue checking for balance until the root is reached.

AVL Tree Performance

- Restructuring
 - A single restructure takes $O(1)$ time.
 - Using a linked-structure binary tree

- Search
 - A search takes $O(\log n)$ time.
 - The height of tree is $O(\log n)$, no restructuring is needed.

- Insertion
 - An insertion takes $O(\log n)$ time.
 - Restructuring up the tree, maintaining heights is $O(\log n)$.

- Deletion
 - A deletion takes $O(\log n)$ time.
 - Restructuring up the tree, maintaining heights is $O(\log n)$.