Maps

- A map models a searchable collection of key-value entries
- Characteristics
 - The main operations: search, inserting, and deleting items
 - Multiple entries with the same key are not allowed.
- Applications
 - Address book
 - Student-record database

Example

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output</th>
<th>Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>isEmpty()</td>
<td>true</td>
<td>∅</td>
</tr>
<tr>
<td>put(5, A)</td>
<td>null</td>
<td>(5, A)</td>
</tr>
<tr>
<td>put(7, B)</td>
<td>null</td>
<td>(5, A), (7, B)</td>
</tr>
<tr>
<td>put(2, C)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C)</td>
</tr>
<tr>
<td>put(8, D)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>get(7)</td>
<td>C</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>get(4)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>get(2)</td>
<td>E</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>size()</td>
<td>4</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>remove(5)</td>
<td>A</td>
<td>(7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>remove(2)</td>
<td>E</td>
<td>(7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>get(2)</td>
<td>null</td>
<td>(7, B), (8, D)</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>false</td>
<td>(7, B), (8, D)</td>
</tr>
</tbody>
</table>
A Simple List-Based Map

- We can efficiently implement a map using an unsorted list.
- We store the items of the map in a list S (based on a doubly-linked list), in arbitrary order.

Methods for Map

- get(key) algorithm

 Algorithm get(k):
 B = S.positions()
 while B.hasNext() do
 p = B.next()
 if p.element().getKey() = k then
 return p.element().getValue()
 return null

- put(key, value) algorithm

 Algorithm put(k,v):
 B = S.positions()
 while B.hasNext() do
 p = B.next()
 if p.element().getKey() = k then
 t = p.element().getValue()
 S.set(p,(k,v))
 return t
 S.addLast((k,v))
 n = n + 1
 return null

- remove(k) Algorithm

 Algorithm remove(k):
 B = S.positions()
 while B.hasNext() do
 p = B.next()
 if p.element().getKey() = k then
 t = p.element().getValue()
 S.remove(p)
 n = n - 1
 return t
 return null

Performance of a List-Based Map

- Time complexity
 - The put operation takes $O(1)$ time since we can insert the new item at the beginning or at the end of the sequence.
 - The get and remove operations take $O(n)$ time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key.
 - In our implementation, put also takes $O(n)$ time.

- The unsorted list implementation is effective only
 - For maps of small size or
 - For maps in which puts are the most common operations while searches and removals are rarely performed.
 - This is not true in our implementation, either.
Problems and Solution

• Problems
 - We have lots of data to store.
 - We desire efficient performance, $O(1)$, for insertion, deletion and searching.
 - Too much (wasted) memory is required if we use an array indexed by the data’s key.

• Solution
 - Hashing

Hashing

• Hash function
 - A mathematical function h that, given a key k, gives an index $h(k)$ into the hash table (an array), where the item with key k can be found.

• Case
 - Integer keys in the range 1, ..., 32000.
 - Array indices are 0, ..., 249.
 - No more than 250 keys are used altogether.

• Compression map
 - Trivial hash function: $h(k) = k$, which is not plausible
 - We require a hash function that will scale the key down to the allowable range 0, ..., 249.
 - Try $h(k) = k \mod 250$.

Hash Functions and Hash Tables

• A hash function h maps
 - keys of a given type to integers in a fixed interval $[0, N - 1]$.
 - Example: $h(x) = k \mod N$

• Hash value
 - The integer $h(x)$ is called the hash value of key x

• A hash table for a given key type consists of
 - Hash function $h(x)$
 - Array (called table) of size N
 - When implementing a map with a hash table, the goal is to store item (key, value) at index $i = h(x)$
Hash Functions

- Typically specified as the composition of two functions:
 - Hash code h_1: key \rightarrow integer
 - Compression function h_2: integer $\rightarrow [0, N - 1]$
- Hash function
 - The hash code is applied first.
 - The compression function is applied next on the result.
 - Example: $h(x) = h_2(h_1(x))$
- The goal of the hash function
 - “Disperse” the keys in an apparently random way

Hash Codes

- Memory address
 - We reinterpret the memory address of the key object as an integer (default hash code of all Java objects)
 - Good in general, except for numeric and string keys
- Integer cast
 - We reinterpret the bits of the key as an integer
 - Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java)
- Component sum
 - We partition the bits of the key into components of fixed length (e.g., 8, 16 or 32 bits) and we sum the components (ignoring overflows)
 - Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in Java)

Hash Codes (cont.)

- Polynomial accumulation
 - We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits) as $a_0 a_1 ... a_{n-1}$
 - We evaluate the polynomial
 $$p(z) = a_0 + a_1 z + a_2 z^2 + ... + a_{n-1} z^{n-1}$$
 at a fixed value z, ignoring overflows.
 - Polynomial $p(z)$ can be evaluated in $O(n)$ time using Horner’s rule:
 $$p_0(z) = a_{n-1}$$
 $$p_i(z) = a_{n-i} + z p_{i-1}(z), (i = 1, 2, ..., n - 1)$$
 $$p(z) = p_{n-1}(z)$$
 - Especially suitable for strings: The choice of $z = 33$ gives at most 6 collisions on a set of 50,000 English words
Compression Functions

- Division:
 - \(h_2(y) = y \mod N \)
 - The size \(N \) of the hash table is usually chosen to be a prime to minimize collision.
- Multiply, Add and Divide (MAD):
 - \(h_2(y) = (ay + b) \mod N \)
 - \(a \) and \(b \) are nonnegative integers such that \(a \mod N \neq 0 \).
 - Otherwise, every integer would map to the same value \(b \).

Collision Handling

- Collisions occur when different elements are mapped to the same cell.
- Separate Chaining
 - Let each cell in the table point to a linked list of entries that map there.
 - Simple, but requires additional memory outside the table.

Map with Separate Chaining

Algorithm get(k):
return A[h(k)].get(k)

Algorithm remove(k):
t = A[h(k)].remove(k)
if t \neq null then // k was found
 n = n - 1
return t

Algorithm put(k,v):
t = A[h(k)].put(k,v)
if t = null then // k is a new key
 n = n + 1
return t

Linear Probing

- Open addressing
 - The colliding item is placed in a different cell of the table
- Linear probing
 - Handles collisions by placing the colliding item in the next (circularly) available table cell
 - Each table cell inspected is referred to as a “probe”
 - Colliding items lump together, causing future collisions to cause a longer sequence of probes.
- Example:
 - \(h(x) = x \mod 13 \)
 - Insert keys in the following order: 18, 41, 22, 44, 59, 32, 31, 73
Search with Linear Probing

- **get(key)** method
 - Consider a hash table A that uses linear probing
 - We start at cell \(h(x) \)
 - We probe consecutive locations until one of the following occurs:
 - An item with key is found, or
 - An empty cell is found, or
 - All cells have been unsuccessfully probed

 \[
 \text{Algorithm } \text{get}(k) \nn i \leftarrow h(k) \nn p \leftarrow 0 \nn \text{repeat} \nn \quad c \leftarrow A[i] \nn \quad \text{if } c = \emptyset \nn \quad \quad \text{return } \text{null} \nn \quad \text{else if } c.getKey() = k \nn \quad \quad \text{return } c.getValue() \nn \quad \text{else} \nn \quad \quad i \leftarrow (i + 1) \mod N \nn \quad \quad p \leftarrow p + 1 \nn \text{until } p = N \nn \text{return } \text{null}
 \]

Updates with Linear Probing

- **put(key, value)** method
 - We throw an exception if the table is full.
 - We start at cell \(h(x) \)
 - We probe consecutive cells until one of the following occurs:
 - A cell is found that is either empty or stores AVAILABLE, or
 - All cells have been unsuccessfully probed.
 - We store \((key, value)\) in the found empty or AVAILABLE cell.

Double Hashing

- **Double hashing**
 - Uses a secondary hash function \(d(k) \)
 - Handles collisions by placing an item in the first available cell of the series \((i + jd(k)) \mod N\) for \(j = 0, 1, \ldots, N - 1\).
 - The secondary hash function \(d(k)\) cannot have zero values.
 - The table size \(N\) must be a prime to allow probing of all the cells.
 - Common choice of compression function for the secondary hash function:
 - \(d_2(k) = q - k \mod q\) where \(q < N\) and \(q\) is a prime
 - The possible values for \(d_2(k)\) are \(1, 2, \ldots, q\).
Example of Double Hashing

- Consider a hash table storing integer keys that handles collision with double hashing
 - \(N = 13 \)
 - \(h(k) = k \mod 13 \)
 - \(d(k) = 7 - k \mod 7 \)
- Example
 - Insert keys in the following order: 18, 41, 22, 44, 59, 32, 31, 73

<table>
<thead>
<tr>
<th>(k)</th>
<th>(h(k))</th>
<th>(d(k))</th>
<th>Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>59</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>73</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Performance of Hashing

- Worse case time complexity on hash table
 - Insertion: \(O(n) \)
 - Removal: \(O(n) \)
 - The worst case occurs when all the keys inserted into the map collide.
- Our expectation
 - The load factor \(\alpha = \frac{n}{N} \) affects the performance of a hash table.
 - Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is \(\frac{1}{1 - \alpha} \).
- Expected running time
 - All operations in a hash table: \(O(1) \)
 - In practice, hashing is very fast provided the load factor is not close to 100%.