Graphs

- Definition
 - A graph $G = (V, E)$ consists of a finite set of vertices, V, and a finite set of edges, E.

- Properties
 - V and E are sets: each vertex $v \in V$ and each edge $e \in E$ are unique.
 - Edge: (v, w), where $v, w \in V$
 - Vertices and edges may store elements.

Example:
- A vertex represents an airport and stores the three-letter airport code.
- An edge represents a flight route between two airports and stores the mileage of the route.

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram
Basic Graph Definitions

- **Directed graph (= digraph)**
 - Graph with directed edges
 - Directed edges
 - Ordered pair of vertices, $(v, w) \neq (w, v)$
 - The first vertex is the origin and the second vertex is the destination.

- **Undirected graph**
 - Graph with undirected edges
 - Undirected edges: $(v, w) = (w, v)$

- **Sparse graph**
 - Graph with few edges
 - $|E| = O(|V|)$, where $|\cdot|$ is the number of elements in a set

- **Dense graph**
 - Graph with many edges: $|E| = O(|V|^2)$

Undirected Graph

- $V = \{1, 2, 3, 4, 5\}$
- $E = \{(1,2), (2,3), (3,4), (4,5), (5,1), (2,4)\}$

Directed Graph

- $V = \{1, 2, 3, 4, 5\}$
- $E = \{(1,2), (3,2), (4,3), (4,5), (5,4), (5,1), (2,4)\}$
Terminology

- **End vertices (or endpoints) of an edge**
 - \(u \) and \(v \) are the endpoints of \(e_a \).

- **Edges incident on a vertex**
 - \(e_a, e_b, \) and \(e_d \) are incident on \(v \).

- **Adjacent vertices**
 - \((u, v) \in E\)
 - Vertices \(u \) and \(v \) are adjacent.

- **Degree of a vertex**
 - Number of incident edges
 - \(\deg(x) = 5 \)

- **Self-loop**
 - Edge between the same vertex
 - \(e_j \) is a self-loop.

Terminology (Cont.)

- **Path**
 - Sequence of vertices \(v_1, v_2, ..., v_n \) such that \((v_i, v_{i+1}) \in E\)
 - Length of a path
 - Number of edges on the path
 - The length of the path from a vertex to itself is 0.

- **Simple path**
 - Path such that all its vertices and edges are distinct
 - Example: \(p_1 = (v, x, z) \)
 - Non-simple path: \(p_2 = (u, w, y, y, w, v) \)

Terminology in Directed Graph

- **Cycle**
 - Sequence of vertices \(v_1, v_2, ..., v_n \) such that \((v_i, v_{i+1}) \in E\) and \(v_1 = v_n \)
 - No backtracking

- **Simple cycle**
 - Cycle such that all its vertices and edges are distinct.
 - Example: \(c_1 = (v, x, y, w, u, v) \)
 - Non-simple cycle example: visiting the same node multiple times
 - \(c_2 = (u, w, x, y, w, v, u) \)

- **Adjacency**
 - For directed graphs, vertex \(w \) is adjacent to \(v \) if and only if \((v, w) \in E\).

- **Degree**
 - Indegree
 - Number of incoming edges
 - \(\deg_{in}(X) = 2 \)
 - Outdegree
 - Number of outgoing edges
 - \(\deg_{out}(W) = 2 \)

- **Path and cycle in directed graph**
 - Should consider the direction of edges
 - Directed Acyclic Graph (DAG): directed graph with no cycles
Properties of Graphs

- For undirected graph
 - $G = (V, E)$, where $|V| = n$ and $|E| = m$
 - $\sum_v \deg(v) = 2m$
 - Each edge is counted twice.
 - $m \leq n(n-1)/2$ with no self-loops and no multiple edges
 - Each vertex has degree at most $(n-1)$

- What is the bound for a directed graph?

Connectivity

- Connected graph
 - In undirected graph
 - There is a path from every vertex to every other vertex.
 - Strongly connected graph
 - There is a path from every vertex to every other vertex.
 - Weakly connected graph
 - In directed graphs
 - There is a path from every vertex to every other vertex, disregarding the direction of the edges.

Subgraph

- A graph S is a subgraph of G if and only if $V_S \subseteq V_G$ and $E_S \subseteq E_G$.

Complete graph

- There is an edge between every pair of vertices.
- Connected component: maximal connected subgraph

Non-connected graph with two connected components