Search
Today

- Agents that Plan Ahead
- Search Problems
- Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
Reflex Agents

- Reflex agents:
 - Choose action based on current percept (and maybe memory)
 - May have memory or a model of the world’s current state
 - Do not consider the future consequences of their actions
 - Consider how the world IS

- Can a reflex agent be rational?
Planning agents:
- Ask “what if”
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Must formulate a goal (test)
- Consider how the world WOULD BE

- Optimal vs. complete planning
- Planning vs. replanning
Search Problems
A search problem consists of:

- A state space
- A successor function (with actions, costs)
- A start state and a goal test

A solution is a sequence of actions (a plan) which transforms the start state to a goal state.
Example: Traveling in Romania

- **State space:**
 - Cities

- **Successor function:**
 - Roads: Go to adjacent city with cost = distance

- **Start state:**
 - Arad

- **Goal test:**
 - Is state == Bucharest?

- **Solution?**
What’s in a State Space?

The world state includes every last detail of the environment.

A search state keeps only the details needed for planning (abstraction).

- **Problem: Pathing**
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- **Problem: Eat-All-Dots**
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false
State Space Sizes?

- **World state:**
 - Agent positions: 120
 - Food count: 30
 - Ghost positions: 12
 - Agent facing: NSEW

- **How many**
 - World states?
 \[120 \times (2^{30}) \times (12^2) \times 4\]
 - States for pathing?
 \[120\]
 - States for eat-all-dots?
 \[120 \times (2^{30})\]
Quiz: Safe Passage

- Problem: eat all dots while keeping the ghosts perma-scared
- What does the state space have to specify?
 - (agent position, dot booleans, power pellet booleans, remaining scared time)
State Space Graphs and Search Trees
State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)

- In a state space graph, each state occurs only once!

- We can rarely build this full graph in memory (it’s too big), but it’s a useful idea
State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only once!

We can rarely build this full graph in memory (it’s too big), but it’s a useful idea
Search Trees

- A search tree:
 - A “what if” tree of plans and their outcomes
 - The start state is the root node
 - Children correspond to successors
 - Nodes show states, but correspond to PLANS that achieve those states
 - For most problems, we can never actually build the whole tree
We construct both on demand – and we construct as little as possible.

Each NODE in in the search tree is an entire PATH in the state space graph.
Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!
Tree Search
Search Example: Romania
Searching with a Search Tree

- **Search:**
 - Expand out potential plans (tree nodes)
 - Maintain a *fringe* of partial plans under consideration
 - Try to expand as few tree nodes as possible
General Tree Search

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem

loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy

- Main question: which fringe nodes to explore?
Example: Tree Search
Example: Tree Search
Depth-First Search
Depth-First Search

Strategy: expand a deepest node first

Implementation:
Fringe is a LIFO stack
Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?

- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - Solutions at various depths

- Number of nodes in entire tree?
 - $1 + b + b^2 + \ldots + b^m = O(b^m)$
Depth-First Search (DFS) Properties

- **What nodes DFS expand?**
 - Some left prefix of the tree.
 - Could process the whole tree!
 - If m is finite, takes time $O(b^m)$

- **How much space does the fringe take?**
 - Only has siblings on path to root, so $O(bm)$

- **Is it complete?**
 - m could be infinite, so only if we prevent cycles (more later)

- **Is it optimal?**
 - No, it finds the “leftmost” solution, regardless of depth or cost
Breadth-First Search
Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue
Breadth-First Search (BFS) Properties

- **What nodes does BFS expand?**
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time $O(b^s)$

- **How much space does the fringe take?**
 - Has roughly the last tier, so $O(b^s)$

- **Is it complete?**
 - s must be finite if a solution exists, so yes!

- **Is it optimal?**
 - Only if costs are all 1 (more on costs later)
Quiz: DFS vs BFS

- When will BFS outperform DFS?

- When will DFS outperform BFS?
Iterative Deepening

- Idea: get DFS’s space advantage with BFS’s time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.

- Isn’t that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!
Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.
Strategy: expand a cheapest node first:
Fringe is a priority queue (priority: cumulative cost)
Uniform Cost Search (UCS) Properties

- **What nodes does UCS expand?**
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε, then the “effective depth” is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)

- **How much space does the fringe take?**
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$

- **Is it complete?**
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!

- **Is it optimal?**
 - Yes! (Proof next lecture via A*)
Uniform Cost Issues

- Remember: UCS explores increasing cost contours

- The good: UCS is complete and optimal!

- The bad:
 - Explores options in every “direction”
 - No information about goal location

- We’ll fix that soon!
The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object
Search and Models

- Search operates over models of the world
 - The agent doesn’t actually try all the plans out in the real world!
 - Planning is all “in simulation”
 - Your search is only as good as your models...
Informed Search
Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search

- Graph Search
Recap: Search

- **Search problem:**
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test

- **Search tree:**
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- **Search algorithm:**
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans
Uniform Cost Search

- **Strategy**: expand lowest path cost

- **The good**: UCS is complete and optimal!

- **The bad**:
 - Explores options in every “direction”
 - No information about goal location
Informed Search
A heuristic is:

- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing
Example: Heuristic Function

$h(x)$
Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

*operation cost = number of pancake flipped

*Pancake sorting
Greedy Search

- Expand the node that seems closest...

- What can go wrong?
Greedy Search

- **Strategy:** expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- **A common case:**
 - Best-first takes you straight to the (wrong) goal

- **Worst-case:** like a badly-guided DFS
A* Search
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* \(g(n) \)
- **Greedy** orders by goal proximity, or *forward cost* \(h(n) \)

\[f(n) = g(n) + h(n) \]

Example: Teg Grenager
When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!
Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe.

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs.
Admissible Heuristics

- A heuristic \(h \) is *admissible* (optimistic) if:

\[
0 \leq h(n) \leq h^*(n)
\]

where \(h^*(n) \) is the true cost to a nearest goal.

- Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$

\[
f(n) = g(n) + h(n) \quad \text{Definition of f-cost}
\]
\[
f(n) \leq g(A) \quad \text{Admissibility of h}
\]
\[
g(A) = f(A) \quad h = 0 \text{ at a goal}
\]
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$

\[g(A) < g(B) \quad \text{B is suboptimal} \]
\[f(A) < f(B) \quad \text{h = 0 at a goal} \]
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$
 3. n expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal
Properties of A*
UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Diagram showing a grid-based pathfinding algorithm.
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available.

- Inadmissible heuristics are often useful too.
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

Start State

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

*9!/2: solvable states
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$
- This is a *relaxed-problem* heuristic

Start State

```
7 2 4
5 6
8 3 1
```

Goal State

```
1 2
3 4 5
6 7 8
```

Average nodes expanded when the optimal path has...

<table>
<thead>
<tr>
<th></th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

- Total Manhattan distance

- Why is it admissible?

- $h(\text{start}) = 3 + 1 + 2 + \ldots = 18$

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>
How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?

With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

*yes, yes but too much computation
Semi-Lattice of Heuristics
Trivial Heuristics, Dominance

- Dominance: $h_a \geq h_c$ if
 \[
 \forall n : h_a(n) \geq h_c(n)
 \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[
 h(n) = \max(h_a(n), h_b(n))
 \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Graph Search
Failure to detect repeated states can cause exponentially more work.
Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- **Idea:** never expand a state twice

- **How to implement:**
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

- **Important:** store the closed set as a set, not a list

- Can graph search wreck completeness? Why/why not?
 - *no, still complete*

- How about optimality?
A* Graph Search Gone Wrong?

State space graph

Search tree

*S cannot use this duplicate check

*Wrong heuristics
Consistency of Heuristics

- **Main idea:** estimated heuristic costs ≤ actual costs
 - **Admissibility:** heuristic cost ≤ actual cost to goal
 \[h(A) \leq \text{actual cost from A to G} \]
 - **Consistency:** heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq \text{cost(A to C)} \]

- **Consequences of consistency:**
 - The f value along a path never decreases
 \[h(A) \leq \text{cost(A to C)} + h(C) \]
 - A* graph search is optimal
Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In graph search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

\[f \leq 1 \]
\[f \leq 2 \]
\[f \leq 3 \]
Optimality

- **Tree search:**
 - A* is optimal if heuristic is admissible
 - UCS is a special case \((h = 0)\)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal \((h = 0\) is consistent)

- Consistency implies admissibility

- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems
function Tree-Search(problem, fringe) return a solution, or failure
 fringe ← Insert(make-node(initial-state[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test(problem, state[node]) then return node
 for child-node in Expand(state[node], problem) do
 fringe ← Insert(child-node, fringe)
 end
 end
end
function Graph-Search\(\text{problem, fringe}\) return a solution, or failure
 \(\text{closed} \leftarrow\) an empty set
 \(\text{fringe} \leftarrow\) INSERT\((\text{MAKE-NODE}([\text{INITIAL-STATE}][\text{problem}]), \text{fringe})\)
 loop do
 if fringe is empty then return failure
 node \leftarrow\) REMOVE-FRONT\((\text{fringe})\)
 if GOAL-TEST\((\text{problem, STATE}[\text{node}]\)) then return node
 if STATE\([\text{node}]\) is not in \(\text{closed}\) then
 add STATE\([\text{node}]\) to \(\text{closed}\)
 for child-node in EXPAND\((\text{STATE}[\text{node}], \text{problem})\) do
 fringe \leftarrow\) INSERT\((\text{child-node, fringe})\)
 end
 end