Spectral Clustering

Seungjin Choi

Department of Computer Science
POSTECH, Korea
seungjin@postech.ac.kr

1

Spectral Clustering Algorithm: Bipartioning

1. Construct affinity matrix

\[W_{ij} = \begin{cases} \exp\{-\beta \|v_i - v_j\|^2\} & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases} \]

2. Calculate the graph Laplacian \(L = D - W \) where \(D = \text{diag}\{d_1, \ldots, d_n\} \) and \(d_i = \sum_j W_{ij} \).

3. Compute the second smallest eigenvector of the graph Laplacian (denoted by \(u = [u_1 \cdots u_n]^T \), Fiedler vector)

4. Partition \(u_i \)'s by a pre-specified threshold value and assign data points \(v_i \) to cluster.

Two Moons Data

![Two Moons Data Plot](image)
Graphs

- Consider a connected graph $G(\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = \{v_1, \ldots, v_n\}$ and \mathcal{E} denote a set of vertices and a set of edges, respectively, with pairwise similarity values being assigned as edge weights.

- **Adjacency matrix** (similarity, proximity, affinity matrix): $W = [W_{ij}] \in \mathbb{R}^{n \times n}$.

- Degree of nodes: $d_i = \sum_j W_{ij}$.

- Volume: $\text{vol}(S_i) = d_{S_i} = \sum_{i \in S_i} d_i$.
Neighborhood Graphs

Gaussian similarity function is given by

\[w(v_i, v_j) = W_{ij} = \exp \left\{ -\frac{||v_i - v_j||^2}{2\sigma^2} \right\} \].

- \(\epsilon \)-neighborhood graph
- \(k \)-nearest neighbor graph

Graph Laplacian

(Unnormalized) graph Laplacian is defined as \(L = D - W \).

1. For every vector \(x \in \mathbb{R}^n \), we have

\[x^\top Lx = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (x_i - x_j)^2 \geq 0. \] (positive semidefinite)

2. The smallest eigenvalue of \(L \) is 0 and the corresponding eigenvector is \(1 = [1 \cdots 1]^\top \), since \(D1 = W1 \), i.e., \(L1 = 0 \).

3. \(L \) has \(n \) nonnegative eigenvalues, \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n = 0 \).

Normalized Graph Laplacian

Two different normalization methods are popular, including:

- Symmetric normalization:

\[L_s = D^{-\frac{1}{2}} L D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}. \]

- Normalization related to random walks:

\[L_{rw} = D^{-1} L = I - D^{-1} W. \]
1. For every vector \(x \in \mathbb{R}^n \), we have
\[
x^\top L x = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \left(\frac{x_i}{\sqrt{d_i}} - \frac{x_j}{\sqrt{d_j}} \right)^2.
\]

2. \(L_{sym} \) and \(L_{rw} \) are positive semidefinite and have \(n \) nonnegative real-valued eigenvalues, \(\lambda_1 \geq \cdots \geq \lambda_n = 0 \).

3. \(\lambda \) is an eigenvalue of \(L_{rw} \) with eigenvector \(u \) if and only if \(\lambda \) is an eigenvalue of \(L_s \) with eigenvector \(D^{1/2}u \).

4. \(\lambda \) is an eigenvalue of \(L_{rw} \) with eigenvector \(u \) if and only if \(\lambda \) and \(u \) solves the generalized eigenvalue problem \(Lu = \lambda Du \).

5. 0 is an eigenvalue of \(L_{rw} \) with the constant one vector \(1 \) as eigenvector. 0 is an eigenvalue of \(L_s \) with eigenvector \(D^{1/2}1 \).

Normalized Spectral Clustering: Shi-Malik

1. Construct a neighborhood graph with corresponding adjacency matrix \(W \).

2. Compute the unnormalized graph Laplacian \(L = D - W \).

3. Find the \(k \) smallest eigenvectors of \(L \) and form the matrix \(U = [u_1 \cdots u_k] \in \mathbb{R}^{n \times k} \).

4. Treating each row of \(U \) as a point in \(\mathbb{R}^k \), cluster them into \(k \) groups using \(k \)-means algorithm.

5. Assign \(v_i \) to cluster \(j \) if and only if row \(i \) of \(U \) is assigned to cluster \(j \).

Normalized Spectral Clustering: Ng-Jordan-Weiss

1. Construct a neighborhood graph with corresponding adjacency matrix \(W \).

2. Compute the normalized graph Laplacian \(L_s = D^{-1/2}LD^{-1/2} \).

3. Find the \(k \) smallest eigenvectors \(u_1, \ldots, u_k \) of \(L_s \) and form the matrix \(U = [u_1 \cdots u_k] \in \mathbb{R}^{n \times k} \).

4. Form the matrix \(\tilde{U} \) from \(U \) by re-normalizing each row of \(U \) to have unit norm, i.e., \(\tilde{U}_{ij} = U_{ij} / (\sum_j U_{ij})^{1/2} \).

5. Treating each row of \(\tilde{U} \) as a point in \(\mathbb{R}^k \), cluster them into \(k \) groups using \(k \)-means algorithm.

6. Assign \(v_i \) to cluster \(j \) if and only if row \(i \) of \(\tilde{U} \) is assigned to cluster \(j \).
Where does this spectral clustering algorithm come from?

• Spectral graph partitioning
• Properties of block (diagonal) matrix
• Markov random walk

Graph Partitioning: Bipartitioning

• Consider a connected graph $G(V, E)$ where $V = \{v_1, \ldots, v_n\}$ and E denote a set of vertices and a set of edges, respectively, with pairwise similarity values being assigned as edge weights.

• Graph bipartitioning involves taking the set V apart into two coherent groups, S_1 and S_2, satisfying $V = S_1 \cup S_2$, ($|V| = n$), and $S_1 \cap S_2 = \emptyset$, by simply cutting edges connecting the two parts

• Adjacency matrix (similarity, proximity, affinity matrix): $W = [W_{ij}] \in \mathbb{R}^{n \times n}$.

• Degree of nodes: $d_i = \sum_j W_{ij}$.

• Volume: $\text{vol}(S_1) = d_{S_1} = \sum_{i \in S_1} d_i$.

Pictorial Illustration: Cut and Volume
Graph Partitioning

The task is to find \(k \) disjoint sets, \(S_1, \ldots, S_k \), given \(G = (V, E) \), where \(S_1 \cap \cdots \cap S_k = \emptyset \) and \(S_1 \cup \cdots \cup S_k = V \) such that a certain cut criterion is minimized.

1. Bipartitioning: \(\text{cut}(S_1, S_2) = \sum_{i \in S_1} \sum_{j \in S_2} W_{ij} \).

2. Multiway partitioning: \(\text{cut}(S_1, \ldots, S_k) = \sum_{i=1}^{k} \text{cut}(S_i, \bar{S}_i) \).

3. Ratio cut: \(R_{\text{cut}}(S_1, \ldots, S_k) = \sum_{i=1}^{k} \frac{\text{cut}(S_i, \bar{S}_i)}{|S_i|} \).

4. Normalized cut: \(N_{\text{cut}}(S_1, \ldots, S_k) = \sum_{i=1}^{k} \frac{\text{cut}(S_i, \bar{S}_i)}{\text{vol}(S_i)} \).

Cut: Bipartitioning

The degree of dissimilarity between \(S_1 \) and \(S_2 \) can be computed by the total weights of edges that have been removed.

\[
\text{cut}(S_1, S_2) = \sum_{i \in S_1} \sum_{j \in S_2} W_{ij}.
\]

Introducing bipolar indicator vector, \(x = q_1 - q_2 \in \{+1, -1\}^n \), the cut criterion is simplified as

\[
\text{Cut}(S_1, S_2) = \frac{1}{4} x^\top L x.
\]

The balanced cut involves the following combinatorial optimization problem

\[
\arg \min x^\top L x \quad \text{subject to } 1^\top x = 0, \quad x \in \{1, -1\}.
\]

Dropping the integer constrains (spectral relaxation), leads to the symmetric eigenvalue problem. The second smallest eigenvector of \(L \) corresponds to the solution, since the smallest eigenvalue of \(L \) is 0 and its associated eigenvector is \(1 \). The second smallest eigenvector is known as Fiedler vector.

Rcut and Unnormalized Spectral Clustering: \(k = 2 \)

Define the indicator vector \(x = [x_1 \cdots x_n]^\top \) with entries

\[
x_i = \begin{cases}
\sqrt{|S_i|/|S|} & \text{if } v_i \in S \\
-\sqrt{|S_i|/|\bar{S}|} & \text{if } v_i \in \bar{S}.
\end{cases}
\]

Then one can easily see that

\[
x^\top L x = 2|V|R_{\text{cut}}(S, \bar{S}),
\]

\[
x^\top 1 = 0,
\]

\[
||x|| = \sqrt{n}.
\]
\[
\arg \min_{S \subseteq V} \text{Rcut}(S, \overline{S}) \equiv \arg \min_{S \subseteq V} x^\top L x,
\]
subject to \(x^\top 1 = 0\),
x \(i\) is defined in previous slide,
\(\|x\| = \sqrt{n}\).

The relaxation by discarding the condition on the discrete values on \(x_i\) and instead allowing \(x_i \in \mathbb{R}\), leads to
\[
\arg \min_{x \in \mathbb{R}^n} x^\top L x, \quad \text{subject to } x^\top 1 = 0 \text{ and } \|x\| = \sqrt{n}.
\]

The eigenvector associated with the second smallest eigenvalue of \(L\). Rounding the eigenvector gives an approximate solution to the ratio cut problem.

25

Rcut and Unnormalized Spectral Clustering: \(k > 2\)

Define the indicator matrix \(X = [x_1 \cdots x_k] \in \mathbb{R}^{n \times k}\) and \(x_i = [x_{1,i} \cdots x_{n,i}]^\top \in \mathbb{R}^n\) with entries
\[
x_{i,j} = \begin{cases}
1/\sqrt{|S_j|} & \text{if } v_i \in S_j \\
0 & \text{if } v_i \in \overline{S}_j.
\end{cases}
\]

Then we have
\[
x_i^\top L x_i = 2 \frac{\text{cut}(S_i, \overline{S}_i)}{|S_i|}, \quad X^\top X = I.
\]

Then the relaxed problem becomes
\[
\arg \min_{X \in \mathbb{R}^{n \times k}} \text{tr} \{ X^\top L X \} \quad \text{subject to } X^\top X = I.
\]

26

Ncut and Normalized Spectral Clustering: \(k = 2\)

Define the indicator vector \(x = [x_1 \cdots x_n]^\top\) with entries
\[
x_i = \begin{cases}
\sqrt{\text{vol}(S)/\text{vol}(\overline{S})} & \text{if } v_i \in S \\
-\sqrt{\text{vol}(\overline{S})/\text{vol}(S)} & \text{if } v_i \in \overline{S}.
\end{cases}
\]

Then one can easily see that
\[
x^\top L x = 2|\mathcal{V}| \text{Ncut}(S, \overline{S}),
\]
\([Dx]^\top 1 = 0,\]
\(x^\top D x = \text{vol}(\mathcal{V}).\)
\[\arg \min_{S \subset V} \text{Ncut}(S, \overline{S}) \equiv \arg \min_{S \subset V} x^\top L x, \]
subject to \((D x)^\top 1 = 0,
\]
x is defined in previous slide,
\[x^\top D x = \text{vol}(\mathcal{V}). \]

Relaxing the problem gives
\[\arg \min_{x \in \mathbb{R}^n} x^\top L x, \quad \text{subject to} \ (D x)^\top 1 = 0 \text{ and } x^\top D x = \text{vol}(\mathcal{V}). \]

Define \(y = D^{1/2} x \), then the problem is
\[\arg \min_{y \in \mathbb{R}^n} y^\top D^{-1/2} L D^{-1/2} y, \quad \text{subject to} \ y^\top D^{1/2} 1 = 0 \text{ and } \|y\|^2 = \text{vol}(\mathcal{V}). \]

The solution \(y \) is given by the 2nd smallest eigenvector of \(L_s \), implying that \(x \) is the 2nd smallest eigenvector of \(L_{rw} \), or equivalently the 2nd smallest generalized eigenvector of \(Lu = \lambda Du \).

\[\text{Ncut and Normalized Spectral Clustering: } k > 2 \]

Define the indicator matrix \(X = [x_1 \cdots x_k] \in \mathbb{R}^{n \times k} \) and \(x_i = [x_{1,i} \cdots x_{n,i}]^\top \in \mathbb{R}^n \) with entries
\[x_{i,j} = \begin{cases} 1/\sqrt{\text{vol}(S_j)} & \text{if } v_i \in S_j \\ 0 & \text{if } v_i \in \overline{S}_j. \end{cases} \]

Then we have
\[x_i^\top L x_i = 2 \frac{\text{cut}(S_i, \overline{S}_i)}{\text{vol}(S_i)}, \quad X^\top X = I, \quad x_i^\top D x_i = 1, \]

\[\text{Ncut}(S_1, \ldots, S_k) = \frac{1}{2} \sum_{i=1}^k x_i^\top L x_i = \frac{1}{2} \text{tr} \left\{ X^\top LX \right\}. \]

\[\text{Markov Random Walk View of Normalized Cut} \]

- Melia and Shi 2001
- Probabilistic interpretation of normalized cut
- Data points are clustered on the basis of the eigenvectors of the resulting transition probability matrix (constructed by the weights)
Transition Probability Matrix

- We define a Markov random walk over the graph by constructing a transition probability matrix from the edge weights
 \[P_{ij} = \frac{W_{ij}}{\sum_j W_{ij}}, \]
 where \(\sum_j P_{ij} = 1 \) for all \(i \).
- The random walk proceeds by successively selecting points according to \(j \sim P_{ij} \) where \(i \) specifies the current location.
- If the graph is connected and non-bipartite (ergodic Markov chain), then the random walk always possesses a unique stationary distribution \(\pi = [\pi_1 \cdots \pi_n]^T \) such that \(\pi^T P = \pi^T \), which is given by \(\pi_i = d_i / \text{vol}(G) \).

Random Walk: Properties

If we start from \(i_0 \), the distribution of points \(i_t \) that we end up with after \(t \) steps, is given by

\[
\begin{align*}
 i_1 & \sim P_{i_0i_1}, \\
 i_2 & \sim \sum_{i_1} P_{i_0i_1} P_{i_1i_2} = [P^2]_{i_0i_2}, \\
 i_3 & \sim \sum_{i_1} \sum_{i_2} P_{i_0i_1} P_{i_1i_2} P_{i_2i_3} = [P^3]_{i_0i_3}, \\
 & \vdots \\
 i_t & \sim [P^t]_{i_0i_t},
\end{align*}
\]

where \(P^t = PP \cdots P \) and \([.]_{ij}\) denotes the \(i, j \) component of the matrix. The distribution of points that we end up with in after \(t \) random steps converges as \(t \) increases.

Ncut via Transition Probabilities

Define \(P(S \mid \overline{S}) = P(X_{t+1} \in S \mid X_t \in \overline{S}) \) where \(X_t \) is a state of Markov random walk model at time \(t \). The Ncut and Markov random walk model has the following relation:

\[\text{Ncut}(S, \overline{S}) = P(S \mid S) + P(S \mid \overline{S}). \]

The minimization of Ncut actually seeks a cut through the graph such that a random walk seldom transitions from \(S \) to \(\overline{S} \) or vice versa.

Stochastic Matrix

The stochastic matrix \(P \) is defined by \(P = D^{-1}W \). To find out how \(P^t \) behaves for large \(t \), it is useful to examine the eigen-decomposition of the following symmetric matrix

\[D^{-\frac{1}{2}}WD^{-\frac{1}{2}} = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \cdots + \lambda_n u_n u_n^T. \]

The symmetric matrix is related to \(P^t \) since

\[(D^{-\frac{1}{2}}WD^{-\frac{1}{2}}) \cdots (D^{-\frac{1}{2}}WD^{-\frac{1}{2}}) = D^{\frac{1}{2}} (P \cdots P) D^{-\frac{1}{2}}. \]

This allows us to write the \(t \) step transition probability matrix in terms of the eigenvalues/vectors of the symmetric matrix

\[
\begin{align*}
P^t &= D^{-\frac{1}{2}} \left(D^{-\frac{1}{2}} W D^{-\frac{1}{2}} \right)^t D^{\frac{1}{2}} \\
 &= D^{-\frac{1}{2}} \left(\lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \cdots + \lambda_n u_n u_n^T \right) D^{\frac{1}{2}},
\end{align*}
\]

where \(\lambda_1 = 1 \) and \(P^\infty = D^{-\frac{1}{2}} \left(u_1 u_1^T \right) D^{\frac{1}{2}}. \)
Spectral Clustering: Stochastic Matrix

- We are interested in the largest correction to the asymptotic limit
 \[P^t \approx P^\infty + D^{-\frac{1}{2}} \left(\lambda_t u_2 u_2^\top \right) D^{\frac{1}{2}}. \]

- Note that \([u_2 u_2^\top]_{ij} = u_{i2} u_{j2} \) and thus the largest correction term increases the probability of transitions between points that share the same sign of \(u_{i2} \) and decreases transitions across points with different signs.

- Binary spectral clustering: Divide the points into clusters based on the sign of the elements of \(u_2 \)
 \[u_{j2} > 0 \Rightarrow \text{cluster 1}, \quad \text{otherwise cluster 0}. \]

Equivalence

Proposition 1. If \(\lambda, x \) are solutions of \(P x = \lambda x \) and \(P = D^{-1} W \), then \((1 - \lambda), x \) are solutions of \(L x = \lambda D x \).

This proposition shows the equivalence between the spectral clustering formulated by the normalized cut and the eigenvalue/vectors of the stochastic matrix \(P \).

The largest eigenvector of \(P \) is \(1 \) containing no information. The second smallest eigenvector in the normalized cut, corresponds to the second largest eigenvector of the stochastic matrix.

Suggested Further Readings