CS 561: Artificial Intelligence

Instructor: Sofus A. Macskassy, macskass@usc.edu
TAs: Nadeesha Ranasinghe (nadeeshr@usc.edu)
 William Yeoh (wyeoh@usc.edu)
 Harris Chiu (chiciu@usc.edu)

Lectures: MW 5:00-6:20pm, OHE 122 / DEN
Office hours: By appointment
Class page: http://www.rcf.usc.edu/~macskass/CS561-Spring2010/

This class will use http://www.uscden.net/ and class webpage
- Up to date information
- Lecture notes
- Relevant dates, links, etc.

Course material:
Logical reasoning systems (Ch 9/10)

• **Theorem provers and logic programming languages**
 ◦ Provers: use resolution to prove sentences in full FOL.
 ◦ Languages: use backward chaining on restricted set of FOL constructs.

• **Production systems**
 ◦ Based on implications, with consequents interpreted as action (e.g., insertion & deletion in KB). Based on forward chaining + conflict resolution if several possible actions.

• **Frame systems and semantic networks**
 ◦ Objects as nodes in a graph, nodes organized as taxonomy, links represent binary relations.

• **Description logic systems**
 ◦ Evolved from semantic nets. Reason with object classes & relations among them.
Basic tasks

- Add a new fact to KB – TELL
- Given KB and new fact, derive facts implied by conjunction of KB and new fact. In forward chaining: part of TELL
- Decide if query entailed by KB – ASK
- Decide if query explicitly stored in KB – restricted ASK
- Remove sentence from KB: distinguish between correcting false sentence, forgetting useless sentence, or updating KB re. change in the world.
Implementing sentences & terms: define syntax and map sentences onto machine representation.

Compound: has operator & arguments.

e.g., \(c = P(x) \land Q(x) \)

\[\text{Op}[c] = \land; \text{Args}[c] = [P(x), Q(x)] \]

FETCH: find sentences in KB that have same structure as query.
ASK makes multiple calls to FETCH.

STORE: add each conjunct of sentence to KB. Used by TELL.

e.g., implement KB as list of conjuncts

\[\text{TELL}(KB, A \land \neg B) \quad \text{TELL}(KB, \neg C \land D) \]

then KB contains: \([A, \neg B, \neg C, D]\)
Complexity

- With previous approach,

 FETCH takes $O(n)$ time on n-element KB

 STORE takes $O(n)$ time on n-element KB (if check for duplicates)

Faster solution?
Table-based indexing

- **What are you indexing on?** Predicates (relations/functions).

Example:

<table>
<thead>
<tr>
<th>Key</th>
<th>Positive</th>
<th>Negative</th>
<th>Conclusion</th>
<th>Premise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
<td>Mother(ann,sam)</td>
<td>-Mother(ann,al)</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td></td>
<td>Mother(grace,joe)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>dog(rover)</td>
<td>-dog(alice)</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td></td>
<td>dog(fido)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table-based indexing

- Use hash table to avoid looping over entire KB for each TELL or FETCH

 e.g., if only allowed literals are single letters, use a 26-element array to store their values.

- More generally:
 - convert to Horn form
 - index table by predicate symbol
 - for each symbol, store:
 - list of positive literals
 - list of negative literals
 - list of sentences in which predicate is in conclusion
 - list of sentences in which predicate is in premise
Tree-based indexing

- Hash table impractical if many clauses for a given predicate symbol
- Tree-based indexing (or more generally combined indexing): compute indexing key from predicate and argument symbols

Diagram:
- Predicate?
 - First arg?
Tree-based indexing

Example:

Person(age, height, weight, income)
Person(30, 72, 210, 45000)
Fetch(Person(age, 72, 210, income))
Fetch(Person(age, height > 72, weight < 210, income))
Unification algorithm: Example

Understands(mary,x) implies Loves(mary,x)
Understands(mary,pete) allows the system to substitute pete for x and make the implication that
IF
Understands(mary,pete) THEN Loves(mary,pete)
Unification algorithm

- Using clever indexing, can reduce number of calls to unification

- Still, unification called very often (at basis of modus ponens) => need efficient implementation.

- See AIMA p. 278 for example of algorithm with O(n^2) complexity (n being size of expressions being unified).
Logic programming

Remember: knowledge engineering vs. programming...

Sound bite: computation as inference on logical KBs

<table>
<thead>
<tr>
<th>Logic programming</th>
<th>Ordinary programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify problem</td>
<td>Identify problem</td>
</tr>
<tr>
<td>2. Assemble information</td>
<td>Assemble information</td>
</tr>
<tr>
<td>3. Tea break</td>
<td>Figure out solution</td>
</tr>
<tr>
<td>4. Encode information in KB</td>
<td>Program solution</td>
</tr>
<tr>
<td>5. Encode problem instance as facts</td>
<td>Encode problem instance as data</td>
</tr>
<tr>
<td>6. Ask queries</td>
<td>Apply program to data</td>
</tr>
<tr>
<td>7. Find false facts</td>
<td>Debug procedural errors</td>
</tr>
</tbody>
</table>

Should be easier to debug \(\text{Capital}(\text{NewYork}, US) \) than \(x := x + 2 ! \)
Logic programming systems

e.g., **Prolog**:

- Program = sequence of sentences (implicitly conjoined)
- All variables implicitly universally quantified
- Variables in different sentences considered distinct
- Horn clause sentences only (= atomic sentences or sentences with no negated antecedent and atomic consequent)
- Terms = constant symbols, variables or functional terms
- Queries = conjunctions, disjunctions, variables, functional terms
- Instead of negated antecedents, use negation as failure operator: goal NOT P considered proved if system fails to prove P
- Syntactically distinct objects refer to distinct objects
- Many built-in predicates (arithmetic, I/O, etc)
Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ 10 million LIPS

Program = set of clauses = head :- literal₁, ..., literalₙ.
Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption ("negation as failure")
 e.g., not PhD(X) succeeds if PhD(X) fails
Basic syntax of facts, rules and queries

<fact> ::= <term> .
<rule> ::= <term> :- <term> .
<query> ::= <term> .
<term> ::= <number> | <atom> | <variable>
 | <atom> (<terms>)
<terms> ::= <term> | <term>, <terms>
A PROLOG program is a set of **facts** and **rules**.

A simple program with just facts:

```prolog
parent(alice, jim).
parent(jim, tim).
parent(jim, dave).
parent(jim, sharon).
parent(tim, james).
parent(tim, thomas).
```
A PROLOG Program

- c.f. a table in a relational database.
- Each line is a **fact** (a.k.a. a tuple or a row).
- Each line states that some person x is a parent of some (other) person y.
- In GNU PROLOG the program is kept in an ASCII file.
Now we can ask PROLOG questions:

\[
\begin{align*}
| & ?- \text{parent}(\text{alice}, \text{jim}). \\
& \text{yes} \\
| & ?- \text{parent}(\text{jim}, \text{herbert}). \\
& \text{no} \\
| & ?-
\end{align*}
\]
A PROLOG Query

- Not very exciting. But what about this:

 | ?- parent(alice, Who).
 Who = jim
 yes
 | ?-

- **Who** is called a *logical variable*.
 - PROLOG will set a logical variable to any value which makes the query succeed.
Sometimes there is more than one correct answer to a query.

- PROLOG gives the answers one at a time. To get the next answer type `;`.

```prolog
| ?- parent(jim, Who).
Who = tim ? ;
Who = dave ? ;
Who = sharon ? ;
yes
| ?- 
```

NB: The `;` do not actually appear on the screen.
| ?- parent(jim, Who).
Who = tim ? ;
Who = dave ? ;
Who = sharon ? ;
yes
| ?-

- After finding that jim was a parent of sharon GNU PROLOG detects that there are no more alternatives for parent and ends the search.

NB: The ; do not actually appear on the screen.
Prolog example

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]
 A=[1,2] B=[]
Append

- `append([], L, L)`
- `append([H| L1], L2, [H| L3]) :- append(L1, L2, L3)`

- Example join `[a, b, c]` with `[d, e]`.
 - `[a, b, c]` has the recursive structure `[a| [b, c]]`.
 - Then the rule says:
 - IF `[b,c]` appends with `[d, e]` to form `[b, c, d, e]` THEN `[a|[b, c]]` appends with `[d,e]` to form `[a|[b, c, d, e]]`
 - i.e. `[a, b, c]` [a, b, c, d, e]
Expanding Prolog

- **Parallelization:**
 - OR-parallelism: goal may unify with many different literals and implications in KB
 - AND-parallelism: solve each conjunct in body of an implication in parallel

- **Compilation:** generate built-in theorem prover for different predicates in KB

- **Optimization:** for example through re-ordering
 - e.g., “what is the income of the spouse of the president?”
 - \(\text{Income}(s, i) \land \text{Married}(s, p) \land \text{Occupation}(p, \text{President}) \)
 - faster if re-ordered as:
 - \(\text{Occupation}(p, \text{President}) \land \text{Married}(s, p) \land \text{Income}(s, i) \)
Theorem provers

- Differ from logic programming languages in that:
 - accept full FOL
 - results independent of form in which KB entered
OTTER

- Organized Techniques for Theorem Proving and Effective Research (McCune, 1992)

- **Set of support (sos):** set of clauses defining facts about problem
- Each resolution step: resolves member of sos against other axiom
- **Usable axioms** (outside sos): provide background knowledge about domain
- **Rewrites** (or demodulators): define canonical forms into which terms can be simplified. E.g., $x+0=x$
- **Control strategy:** defined by set of parameters and clauses. E.g., heuristic function to control search, filtering function to eliminate uninteresting subgoals.
OTTER → Prover9/Mace4

• Operation: resolve elements of sos against usable axioms

• Use best-first search: heuristic function measures “weight” of each clause (lighter weight preferred; thus in general weight correlated with size/difficulty)

• At each step: move lightest close in sos to usable list, and add to usable list consequences of resolving that close against usable list

• Halt: when refutation found or sos empty
Prover9 and Mace4

Prover9 is an automated theorem prover for first-order and equational logic, and Mace4 searches for finite models and counterexamples. Prover9 is the successor of the Otter prover.

Download One of the Following:

- The GUI: Prover9 and Mace4 with a Graphical User Interface
- LADR: Command-line versions of Prover9, Mace4, and other programs

Other Useful Links

- Manual and Examples
- Help! Ask questions about Prover9 and Mace4 in the LADR-Prover9-Mace4 Forums
- Double-check your Prover9 Proofs with Ily
- Let us know if you would like to be on the email list for notification of updates, bugs, etc.

You should ignore any rumors that Prover9 is part of a bigger plan.
Example: Robbins Algebras Are Boolean

- The Robbins problem---are all Robbins algebras Boolean?---has been solved: Every Robbins algebra is Boolean. This theorem was proved automatically by EQP, a theorem proving program developed at Argonne National Laboratory.
Example: Robbins Algebras Are Boolean

Historical Background

• In 1933, E. V. Huntington presented the following basis for Boolean algebra:

\[\begin{align*}
 x + y &= y + x. & \text{[commutativity]} \\
 (x + y) + z &= x + (y + z). & \text{[associativity]} \\
 n(n(x) + y) + n(n(x) + n(y)) &= x. & \text{[Huntington equation]}
\end{align*} \]

• Shortly thereafter, Herbert Robbins conjectured that the Huntington equation can be replaced with a simpler one:

\[n(n(x + y) + n(x + n(y))) = x. \] \text{[Robbins equation]}

• Robbins and Huntington could not find a proof, and the problem was later studied by Tarski and his students.
Given to the system

Success, in 1.28 seconds!

------------ PROOF ------------

1. n(n(A)+B)+n(n(A)+n(B)) = A.
2. x = x.
3. x+y = y+x.
4. (x+y)+z = x+(y+z).
5. n(n(x+y)+n(x+n(y))) = x.
6. x+x = x.
7. n(n(A)+n(B)) + n(n(A)+B) = A.
8. x+ (x+y) = x+y.
9. x+ (y+z) = y+ (x+z).
10. n(n(x)+n(x+n(x))) = x.
11. n(n(n(x)+x)+n(n(x))) = n(x).
12. n(n(x)+n(y))+n(x+y)) = x.
13. n(x+y) = x+(z+y).
14. n(n(x+n(x)) + n(x)) = x.
15. n(n(x+x+n(x)) + x) = n(x+n(x)) + n(x).
16. n(x+n(x)) + n(x) = n(x).
17. n(n(x)+n(x)) = n(x).
18. n(x+ (n(x)+n(x))) + (n(x+n(x))+x) = n(x).
19. n(x+ (n(x)+n(x)+x)) = n(x).
20. n(x+ (n(x)+n(x)+x)) + n(x) = n(x+n(x)) + n(x).
21. n(n(x)+n(x)) + n(x) = n(x).
22. n(x) = x.
23. n(x+n(x))+n(x) = n(x).
24. n(x+n(x)) + x = x.
25. n(x+n(x)) + n(x) = n(x).
26. n(n(x)+n(x)) + x = n(x+n(x)) + x.
27. n(x+(x+y)) = n(x+(y+n(x+y)) + x).
28. n(x+n(x)) + n(x) = n(x).
29. n(x+n(x)) + n(x) = n(x).
30. n(x+n(x)) + n(x) = n(x).
31. n(x+n(x)) + n(x) = n(x).
32. n(x+n(x)) + n(x) = n(x).
33. A! = A.
34. F.
Forward-chaining production systems

- Prolog & other programming languages: rely on backward-chaining (I.e., given a query, find substitutions that satisfy it)

- Forward-chaining systems: infer everything that can be inferred from KB each time new sentence is TELL’ed

- Appropriate for agent design: as new percepts come in, forward-chaining returns best action
Implementation

- One possible approach: use a theorem prover, using resolution to forward-chain over KB

- More restricted systems can be more efficient.

- Typical components:
 - KB called “working memory” (positive literals, no variables)
 - rule memory (set of inference rules in form
 \[p_1 \land p_2 \land ... \Rightarrow act_1 \land act_2 \land ... \]
 - at each cycle: find rules whose premises satisfied
 by working memory (match phase)
 - decide which should be executed (conflict resolution phase)
 - execute actions of chosen rule (act phase)
Match phase

- Unification can do it, but inefficient

- Rete algorithm (used in OPS-5 system):
 example

 rule memory:
 \[
 \begin{align*}
 A(x) \land B(x) \land C(y) & \Rightarrow \text{add } D(x) \\
 A(x) \land B(y) \land D(x) & \Rightarrow \text{add } E(x) \\
 A(x) \land B(x) \land E(x) & \Rightarrow \text{delete } A(x)
 \end{align*}
 \]

 working memory:
 \[
 \{A(1), A(2), B(2), B(3), B(4), C(5)\}
 \]

- Build Rete network from rule memory, then pass working memory through it
Rete network

Circular nodes: fetches to WM; rectangular nodes: unifications

\[
A(x) \land B(x) \land C(y) \Rightarrow \text{add } D(x)
\]
\[
A(x) \land B(y) \land D(x) \Rightarrow \text{add } E(x)
\]
\[
A(x) \land B(x) \land E(x) \Rightarrow \text{delete } A(x)
\]

\{A(1), A(2), B(2), B(3), B(4), C(5)\}

CS561 - Lecture 16 - Macskassy - Spring 2010
Rete match

\[
A(x) \land B(x) \land C(y) \Rightarrow \text{add } D(x) \\
A(x) \land B(y) \land D(x) \Rightarrow \text{add } E(x) \\
A(x) \land B(x) \land E(x) \Rightarrow \text{delete } A(x)
\]

\[
\{A(1), A(2), B(2), B(3), B(4), C(5), D(2), E(2)\}
\]

\[
A(1), A(2) B(2), B(3), B(4)
\]

\[
A(2) B(2)
\]

\[
x/2
\]

\[
\text{D(2)}
\]

\[
\text{A=D}
\]

\[
\text{Add E}
\]

\[
\text{Add D}
\]

\[
\text{Delete A}
\]

\[
\text{Delete A(2)}
\]
Advantages of Rete networks

- Share common parts of rules
- Eliminate duplication over time (since for most production systems only a few rules change at each time step)
Conflict resolution phase

- one strategy: execute all actions for all satisfied rules

- or, treat them as suggestions and use conflict resolution to pick one action.

- Strategies:
 - no duplication (do not execute twice same rule on same args)
 - regency (prefer rules involving recently created WM elements)
 - specificity (prefer more specific rules)
 - operation priority (rank actions by priority and pick highest)
Frame systems & semantic networks

- Other notation for logic; equivalent to sentence notation
- Focus on categories and relations between them (remember ontologies)
 - e.g., Cats → Mammals

\textit{Subset}
Syntax and Semantics

<table>
<thead>
<tr>
<th>Link Type</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subset A → B</td>
<td>A ⊆ B</td>
</tr>
<tr>
<td>Member A → B</td>
<td>A ∈ B</td>
</tr>
<tr>
<td>R A → B</td>
<td>R(A,B)</td>
</tr>
<tr>
<td>R A → B</td>
<td>∀x x ∈ A ⇒ R(x,y)</td>
</tr>
<tr>
<td>R A → B</td>
<td>∀x ∃y x ∈ A ⇒ y ∈ B ∧ R(x,y)</td>
</tr>
</tbody>
</table>
Semantic Network Representation

Animal
 - Skin
 - Can"
Semantic network link types

<table>
<thead>
<tr>
<th>Link type</th>
<th>Semantics</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subset</td>
<td>$A \subset B$</td>
<td>Cats \rightarrow Mammals</td>
</tr>
<tr>
<td>Member</td>
<td>$A \in B$</td>
<td>Bill \rightarrow Cats</td>
</tr>
<tr>
<td>R</td>
<td>$R(A, B)$</td>
<td>Bill \rightarrow 12</td>
</tr>
<tr>
<td>$\forall x \ x \in A \Rightarrow R(x, B)$</td>
<td>Birds \rightarrow 2</td>
<td></td>
</tr>
<tr>
<td>$\forall x \exists y \ x \in A \Rightarrow y \in B \land R(x, y)$</td>
<td>Birds \rightarrow Birds</td>
<td></td>
</tr>
</tbody>
</table>