CS 561: Artificial Intelligence

Instructor: Sofus A. Macskassy, macskass@usc.edu
TAs: Nadeesha Ranasinghe (nadeeshr@usc.edu)
 William Yeoh (wyeoh@usc.edu)
 Harris Chiu (chiciu@usc.edu)

Lectures: MW 5:00-6:20pm, OHE 122 / DEN
Office hours: By appointment
Class page: http://www-rcf.usc.edu/~macskass/CS561-Spring2010/

This class will use http://www.uscden.net/ and class webpage
 - Up to date information
 - Lecture notes
 - Relevant dates, links, etc.

Course material:
Outline [AIMA Ch 13]

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule
Uncertainty

- Let action $A_t = \text{leave for airport } t \text{ minutes before flight}$
- Will A_t get me there on time?

Problems:
- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (at tire, etc.)
- 4) immense complexity of modeling and predicting traffic

Hence a purely logical approach either
 - 1) risks falsehood: A_{25} will get me there on time"
 or 2) leads to conclusions that are too weak for decision making:
 “A_{25} will get me there on time if there's no accident on the bridge
 and it doesn't rain and my tires remain intact etc., etc."

- (A_{1440} might reasonably be said to get me there on time but I'd have
 to stay overnight in the airport ...
Methods for handling uncertainty

- Default or nonmonotonic logic:
 Assume my car does not have a flat tire
 Assume A_{25} works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?

- Rules with fudge factors:
 $A_{25} \rightarrow_{0.3} AtAirportOnTime$
 $Sprinkler \rightarrow_{0.99} WetGrass$
 $WetGrass \rightarrow_{0.7} Rain$
- Issues: Problems with combination, e.g., $Sprinkler$ causes $Rain$??

- Probability
 Given the available evidence,
 A_{25} will get me there on time with probability 0.04
- Mahaviracarya (9th C.), Cardamo (1565) theory of gambling
- (Fuzzy logic handles degree of truth NOT uncertainty e.g., $WetGrass$ is true to degree 0.2)
Probability

Probabilistic assertions **summarize** effects of
 - **laziness**: failure to enumerate exceptions, qualifications, etc.
 - **ignorance**: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one's own state of knowledge
 - e.g., \(P(A_{25} | \text{no reported accidents}) = 0.06 \)
 - These are not claims of a “probabilistic tendency” in the current situation (but might be learned from past experience of similar situations)

- Probabilities of propositions change with new evidence:
 - e.g., \(P(A_{25} | \text{no reported accidents, 5 a.m.}) = 0.15 \)
- (Analogous to logical entailment status \(KB \models \alpha \), not truth.)
Making decisions under uncertainty

- Suppose I believe the following:
 \[P(A_{25} \text{ gets me there on time | ...}) = 0.04 \]
 \[P(A_{90} \text{ gets me there on time | ...}) = 0.70 \]
 \[P(A_{120} \text{ gets me there on time | ...}) = 0.95 \]
 \[P(A_{1440} \text{ gets me there on time | ...}) = 0.9999 \]

- Which action to choose?
- Depends on my preferences for missing flight vs. airport cuisine, etc.
- Utility theory is used to represent and infer preferences
- Decision theory = utility theory + probability theory
Probability basics

Begin with a set Ω—the sample space
e.g., 6 possible rolls of a die.
$\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space
with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.
$0 \leq P(\omega) \leq 1$
$\sum_{\omega} P(\omega) = 1$
e.g., $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$.

An event A is any subset of Ω

$P(A) = \sum_{\omega \in A} P(\omega)$
e.g., $P(\text{die roll } < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$
Random variables

A random variable is a function from sample points to some range, e.g., the reals or Booleans
e.g., $Odd(1) = true$.

P induces a probability distribution for any r.v. X:

$$P(X = x_i) = \sum_{\omega: X(\omega) = x_i} P(\omega)$$

e.g., $P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$
Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B:
- event $a =$ set of sample points where $A(\omega) = true$
- event $\neg a =$ set of sample points where $A(\omega) = false$
- event $a \land b =$ points where $A(\omega) = true$ and $B(\omega) = true$

Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
- e.g., $A = true$, $B = false$, or $a \land \neg b$.

Proposition = disjunction of atomic events in which it is true
- e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$

\[P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b) \]
Why use probability?

- The definitions imply that certain logically related events must have related probabilities.
- E.g., $P(a \lor b) = P(a) + P(b) + P(a \land b)$

- de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.
Syntax for propositions

- Propositional or Boolean random variables
 e.g., Cavity (do I have a cavity?)
 $\text{Cavity} = \text{true}$ is a proposition, also written cavity

- Discrete random variables (finite or infinite)
 e.g., Weather is one of $\langle \text{sunny}, \text{rain}, \text{cloudy}, \text{snow} \rangle$
 $\text{Weather} = \text{rain}$ is a proposition
 Values must be exhaustive and mutually exclusive

- Continuous random variables (bounded or unbounded)
 e.g., $\text{Temp} = 21.6$; also allow, e.g., $\text{Temp} < 22.0$.

- Arbitrary Boolean combinations of basic propositions
Prior probability

- Prior or unconditional probabilities of propositions
e.g., \(P(\text{Cavity} = \text{true}) = 0.1 \) and \(P(\text{Weather} = \text{sunny}) = 0.72 \) correspond to belief prior to arrival of any (new) evidence.

- Probability distribution gives values for all possible assignments:
 \(P(\text{Weather}) = \langle 0.72, 0.1, 0.08, 0.1 \rangle \) (normalized, i.e., sums to 1)

- Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
 \(P(\text{Weather}, \text{Cavity}) \) = a 4 \times 2 \) matrix of values:

<table>
<thead>
<tr>
<th>Weather =</th>
<th>sunny</th>
<th>rain</th>
<th>cloudy</th>
<th>snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity = true</td>
<td>0.144</td>
<td>0.02</td>
<td>0.016</td>
<td>0.02</td>
</tr>
<tr>
<td>Cavity = false</td>
<td>0.576</td>
<td>0.08</td>
<td>0.064</td>
<td>0.08</td>
</tr>
</tbody>
</table>

- Every question about a domain can be answered by the joint distribution because every event is a sum of sample points.
Probability for continues variables

- Express distribution as a parameterized function of value:
 \[P(X = x) = U[18; 26](x) = \text{uniform density between 18 and 26} \]

- Here \(P \) is a density; integrates to 1.
- \(P(X = 20.5) = 0.125 \) really means
 \[\lim_{dx \to 0} \frac{P(20.5 \leq X \leq 20.5 + dx)}{dx} = 0.125 \]
Gaussian density

\[P(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
Conditional probability

- Conditional or posterior probabilities
 - e.g., \(P(\text{cavity}|\text{toothache}) = 0.8 \)
 - i.e., given that \text{toothache} is all I know
 - NOT “if \text{toothache} then 80% chance of \text{cavity}”

- (Notation for conditional distributions:
 \(P(\text{Cavity}|\text{Toothache}) = \) 2-element vector of 2-element vectors)

- If we know more, e.g., \text{cavity} is also given, then we have
 \(P(\text{cavity}|\text{toothache}, \text{cavity}) = 1 \)

- Note: the less specific belief remains valid after more evidence arrives, but is not always useful

- New evidence may be irrelevant, allowing simplification, e.g.,
 \(P(\text{cavity}|\text{toothache}, \text{49ersWin}) = P(\text{cavity}|\text{toothache}) = 0.8 \)

- This kind of inference, sanctioned by domain knowledge, is crucial
Conditional Probability

Definition of conditional probability:

\[P(a|b) = \frac{P(a \land b)}{P(b)} \text{ if } P(b) \neq 0 \]

Product rule gives an alternative formulation:

\[P(a \land b) = P(a|b)P(b) = P(b|a)P(a) \]

A general version holds for whole distributions, e.g.,

\[P(\text{Weather, Cavity}) = P(\text{Weather}|\text{Cavity})P(\text{Cavity}) \]

(View as a \(4 \times 2\) set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:

\[P(X_1, \ldots, X_n) = P(X_1, \ldots, X_{n-1}) \ P(X_n|X_1, \ldots, X_{n-1}) \]
\[= P(X_1, \ldots, X_{n-2}) \ P(X_{n-1}|X_1, \ldots, X_{n-2}) \ P(X_n|X_1, \ldots, X_{n-1}) \]
\[= \ldots \]
\[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]
Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>catch</td>
<td>¬ catch</td>
</tr>
<tr>
<td>cavity</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.016</td>
<td>.064</td>
</tr>
</tbody>
</table>

For any proposition ϕ, sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega : \omega \models \phi} P(\omega)$$
Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>\neg toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.072</td>
</tr>
<tr>
<td>\neg cavity</td>
<td>0.012</td>
<td>0.008</td>
</tr>
<tr>
<td>cavity</td>
<td>0.016</td>
<td>0.144</td>
</tr>
<tr>
<td>\neg cavity</td>
<td>0.064</td>
<td>0.576</td>
</tr>
</tbody>
</table>

For any proposition \(\phi \), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega : \omega \models \phi} P(\omega)
\]

\[
P(\text{toothache}) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
\]
Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>

For any proposition ϕ, sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)$$

$$P(\text{cavity} \lor \text{toothache}) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$
Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>catch</td>
<td>¬ catch</td>
</tr>
<tr>
<td>cavity</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>

Can also compute conditional probabilities:

\[
P(\neg \text{cavity}|\text{toothache}) = \frac{P(\neg \text{cavity} \land \text{toothache})}{P(\text{toothache})} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
\]
Normalization

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>\neg toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>\neg catch</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>cavity</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>\neg cavity</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>

Denominator can be viewed as a normalization constant α

$$P(Cavity|toothache) = \alpha P(Cavity, toothache)$$
$$= \alpha [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]$$
$$= \alpha [(0.108, 0.016) + (0.012, 0.064)]$$
$$= \alpha (0.12, 0.08) = (0.6, 0.4)$$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables
Inference by enumeration, contd.

- Let \(X \) be all the variables. Typically, we want the posterior joint distribution of the query variables \(Y \) given specific values \(e \) for the evidence variables \(E \).

- Let the hidden variables be \(H = X - Y - E \).

- Then the required summation of joint entries is done by summing out the hidden variables:
 \[
P(Y \mid E = e) = \alpha \sum_h P(Y, E = e, H = h)
 \]

- The terms in the summation are joint entries because \(Y, E, \) and \(H \) together exhaust the set of random variables.

- Obvious problems:
 1) Worst-case time complexity \(O(d^n) \) where \(d \) is the largest arity.
 2) Space complexity \(O(d^n) \) to store the joint distribution.
 3) How to find the numbers for \(O(d^n) \) entries???
Independence

- A and B are independent iff
- $P(A|B) = P(A)$ or $P(B|A) = P(B)$ or $P(A,B) = P(A)P(B)$

\[
P(\text{Toothache; Catch; Cavity; Weather}) = P(\text{Toothache; Catch; Cavity}) \times P(\text{Weather})
\]

- 32 entries reduced to 12; for n independent biased counts, $2^n \rightarrow n$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?
Conditional Independence

- $P(\text{Toothache}, \text{Cavity}, \text{Catch})$ has $2^3 - 1 = 7$ independent entries.
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 \[P(\text{catch}|\text{toothache, cavity}) = P(\text{catch}|\text{cavity}) \]
 \[P(\text{catch}|\text{toothache, :cavity}) = P(\text{catch}|\text{cavity}) \]
- Catch is conditionally independent of Toothache given Cavity:
 \[P(\text{Catch}|\text{Toothache, Cavity}) = P(\text{Catch}|\text{Cavity}) \]
- Equivalent statements:
 \[P(\text{Toothache}|\text{Catch, Cavity}) = P(\text{Toothache}|\text{Cavity}) \]
 \[P(\text{Toothache, Catch}|\text{Cavity}) = P(\text{Toothache}|\text{Cavity})P(\text{Catch}|\text{Cavity}) \]
Conditional independence contd.

- Write out full joint distribution using chain rule:

\[
P(\text{Toothache}, \text{Catch}, \text{Cavity})
= P(\text{Toothache}|\text{Catch}, \text{Cavity})P(\text{Catch}, \text{Cavity})
= P(\text{Toothache}|\text{Catch}, \text{Cavity})P(\text{Catch}|\text{Cavity})P(\text{Cavity})
= P(\text{Toothache}|\text{Cavity})P(\text{Catch}|\text{Cavity})P(\text{Cavity})
\]

- I.e., \(2 + 2 + 1 = 5\) independent numbers (equations 1 and 2 remove 2)

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in \(n\) to linear in \(n\).

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
Bayes’ Rule

Product rule $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$

\Rightarrow Bayes’ rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y)$

Useful for assessing diagnostic probability from causal probability:

$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$

E.g., let M be meningitis, S be stiff neck:

$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$

Note: posterior probability of meningitis still very small!
Bayes’ Rule and conditional independence

\[
P(Cavity | \text{toothache} \land \text{catch})
\]
\[
= P(\text{toothache} \land \text{catch} | Cavity)P(Cavity)
\]
\[
= P(\text{toothache} | Cavity)P(\text{catch} | Cavity)P(Cavity)
\]

- This is an example of a naive Bayes model:

\[
P(Cause, Effect_1, \ldots, Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)
\]

Total number of parameters linear in \(n\)
Wumpus World

- \(P_{ij} = \text{true} \) iff \([i, j]\) contains a pit
- \(B_{ij} = \text{true} \) iff \([i, j]\) is breezy
- Include only \(B_{1,1}, B_{1,2}, B_{2,1} \) in the probability model
Specifying the probability model

- The full joint distribution is \(P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}) \)
- Apply product rule: \(P(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}) P(P_{1,1}, \ldots, P_{4,4}) \)
- (Do it this way to get \(P(\text{Effect} \mid \text{Cause}) \).)
- First term: 1 if pits are adjacent to breezes, 0 otherwise
- Second term: pits are placed randomly, probability 0.2 per square:
 \[
P(P_{1,1}, \ldots, P_{4,4}) = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n}
\]
- for \(n \) pits.
Observations and query

- We know the following facts:
 \[b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} \]
 \[known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1} \]

- Query is \(P(P_{1,3}|known, b) \)

- Define \(Unknown = P_{ij} \) s other than \(P_{1,3} \) and \(Known \)

- For inference by enumeration, we have
 \[P(P_{1,3}|known, b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b) \]

- Grows exponentially with number of squares!
Using conditional independence

- Basic insight: observations are conditionally independent of other hidden squares given neighboring hidden squares.

Define $\text{Unknown} = \text{Fringe} \cup \text{Other}$

$P(b|P_{1,3}, \text{Known, Unknown}) = P(b|P_{1,3}, \text{Known, Fringe})$

- Manipulate query into a form where we can use this!
Using conditional independence contd.

\[
P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \\
= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown})P(P_{1,3}, \text{known}, \text{unknown}) \\
= \alpha \sum_{\text{fringe other}} P(b|\text{known}, P_{1,3}, \text{fringe}, \text{other})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \\
= \alpha \sum_{\text{fringe other}} P(b|\text{known}, P_{1,3}, \text{fringe})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \\
= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \\
= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3})P(\text{known})P(\text{fringe})P(\text{other}) \\
= \alpha P(\text{known})P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe})P(\text{fringe}) \sum_{\text{other}} P(\text{other}) \\
= \alpha' P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe})P(\text{fringe})
Using conditional independence contd.

- $P(P_{1,3}|\text{known, } b) = 0.2(0.04+0.16+0.16), 0.8(0.04+0.16)
 \approx 0.31, 0.69$

- $P(P_{2,2}|\text{known, } b) \approx 0.86, 0.14$
Summary

- Probability is a rigorous formalism for uncertain knowledge
- **Joint probability distribution** specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- **Independence and conditional independence** provide the tools