Parsing III

(Top-down parsing: recursive descent & LL(1))
We set out to study parsing

• Specifying syntax
 → Context-free grammars ✓
 → Ambiguity ✓

• Top-down parsers
 → Algorithm & its problem with left recursion ✓
 → Left-recursion removal ✓

• Predictive top-down parsing
 → The LL(1) condition today
 → Simple recursive descent parsers today
 → Table-driven LL(1) parsers today
Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack

Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?

- In general, an arbitrarily large amount
- Use the Cocke-Younger, Kasami algorithm or Earley’s algorithm

Fortunately,

- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are $LL(1)$ and $LR(1)$ grammars
Predictive Parsing

Basic idea

Given $A \rightarrow \alpha | \beta$, the parser should be able to choose between α & β

FIRST sets

For some rhs $\alpha \in G$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $x \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* x \gamma$, for some γ

We will defer the problem of how to compute FIRST sets until we look at the LR(1) table construction algorithm
Predictive Parsing

Basic idea

Given $A \rightarrow \alpha | \beta$, the parser should be able to choose between α & β

FIRST sets

For some rhs $\alpha \in G$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α. That is, $x \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* x \gamma$, for some γ

The LL(1) Property

If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like $\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

This is almost correct
See the next slide
Predictive Parsing

What about ε-productions?

⇒ They complicate the definition of LL(1)

If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \text{FIRST}(\alpha)$, then we need to ensure that $\text{FIRST}(\beta)$ is disjoint from $\text{FOLLOW}(\alpha)$, too.

Define $\text{FIRST}^+(\alpha)$ as

- $\text{FIRST}(\alpha) \cup \text{FOLLOW}(\alpha)$, if $\varepsilon \in \text{FIRST}(\alpha)$
- $\text{FIRST}(\alpha)$, otherwise

Then, a grammar is LL(1) iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies

$$\text{FIRST}^+(\alpha) \cap \text{FIRST}^+(\beta) = \emptyset$$

$\text{FOLLOW}(\alpha)$ is the set of all words in the grammar that can legally appear immediately after an α.

Predictive Parsing

Given a grammar that has the LL(1) property

• Can write a simple routine to recognize each lhs
• Code is both simple & fast

Consider \(A \to \beta_1 | \beta_2 | \beta_3 \), with

\[
\text{FIRST}^+(\beta_1) \cap \text{FIRST}^+(\beta_2) \cap \text{FIRST}^+(\beta_3) = \emptyset
\]

/* find an \(A \) */
if (current_word \(\in \) FIRST(\(\beta_1 \)))
 find a \(\beta_1 \) and return true
else if (current_word \(\in \) FIRST(\(\beta_2 \)))
 find a \(\beta_2 \) and return true
else if (current_word \(\in \) FIRST(\(\beta_3 \)))
 find a \(\beta_3 \) and return true
else
 report an error and return false

Of course, there is more detail to “find a \(\beta_i \)” (§ 3.3.4 in EAC)

Grammars with the LL(1) property are called predictive grammars because the parser can “predict” the correct expansion at each point in the parse.

Parsers that capitalize on the LL(1) property are called predictive parsers.

One kind of predictive parser is the recursive descent parser.
Recursive Descent Parsing

Recall the expression grammar, after transformation

This produces a parser with six mutually recursive routines:

- Goal
- Expr
- EPrime
- Term
- TPrime
- Factor

Each recognizes one NT or T

The term descent refers to the direction in which the parse tree is built.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goal</td>
<td>→</td>
</tr>
<tr>
<td>2</td>
<td>Expr</td>
<td>→</td>
</tr>
<tr>
<td>3</td>
<td>Expr’</td>
<td>→</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Term</td>
<td>→</td>
</tr>
<tr>
<td>7</td>
<td>Term’</td>
<td>→</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Factor</td>
<td>→</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recursive Descent Parsing (Procedural)

A couple of routines from the expression parser

Goal()

\[
\text{token } \leftarrow \text{next_token()}; \\
\text{if (Expr() = true } \& \text{ token } = \text{EOF}) \\
\text{then next compilation step;} \\
\text{else} \\
\text{report syntax error;} \\
\text{return false;}
\]

Expr()

\[
\text{if (Term() = false) } \\
\text{then return false;} \\
\text{else return Eprime();}
\]

Factor()

\[
\text{if (token } = \text{Number) then} \\
\text{token } \leftarrow \text{next_token()}; \\
\text{return true;} \\
\text{else if (token } = \text{Identifier) then} \\
\text{token } \leftarrow \text{next_token()}; \\
\text{return true;} \\
\text{else} \\
\text{report syntax error;} \\
\text{return false;}
\]

EPrime, Term, & TPrime follow the same basic lines (Figure 3.7, EAC)

looking for EOF, found token

looking for Number or Identifier, found token instead
Recursive Descent Parsing

To build a parse tree:
• Augment parsing routines to build nodes
• Pass nodes between routines using a stack
• Node for each symbol on rhs
• Action is to pop rhs nodes, make them children of lhs node, and push this subtree

To build an abstract syntax tree
• Build fewer nodes
• Put them together in a different order

Success ⇒ build a piece of the parse tree

This is a preview of Chapter 4
Left Factoring

What if my grammar does not have the LL(1) property?
⇒ Sometimes, we can transform the grammar

The Algorithm

∀ A ∈ NT,
\begin{align*}
\text{find the longest prefix } \alpha \text{ that occurs in two} \\
\text{or more right-hand sides of } A \\
\text{if } \alpha \neq \varepsilon \text{ then replace all of the } A \text{ productions,} \\
A \rightarrow \alpha \beta_1 | \alpha \beta_2 | ... | \alpha \beta_n | \gamma, \\
\text{with} \\
A \rightarrow \alpha \ Z | \gamma \\
Z \rightarrow \beta_1 | \beta_2 | ... | \beta_n \\
\text{where } Z \text{ is a new element of } NT
\end{align*}

Repeat until no common prefixes remain
Left Factoring

A graphical explanation for the same idea

\[A \rightarrow \alpha \beta_1 \]
\[| \alpha \beta_2 \]
\[| \alpha \beta_3 \]

becomes ...

\[A \rightarrow \alpha Z \]
\[Z \rightarrow \beta_1 \]
\[| \beta_2 \]
\[| \beta_n \]
Left Factoring

Consider the following fragment of the expression grammar:

\[
Factor \rightarrow \text{Identifier} \\
| \text{Identifier} [\text{ExprList}] \\
| \text{Identifier} (\text{ExprList})
\]

After left factoring, it becomes:

\[
Factor \rightarrow \text{IdentifierArguments} \\
Argument \rightarrow [\text{ExprList}] \\
| (\text{ExprList}) \\
| \epsilon
\]

First, we can calculate the FIRST sets for each rule:

- \(\text{FIRST}(\text{rhs}_1) = \{ \text{Identifier} \} \)
- \(\text{FIRST}(\text{rhs}_2) = \{ \text{Identifier} \} \)
- \(\text{FIRST}(\text{rhs}_3) = \{ \text{Identifier} \} \)
- \(\text{FIRST}(\text{rhs}_4) = \text{FOLLOW}(\text{Factor}) \)

⇒ It has the \(LL(1) \) property

This form has the same syntax, with the \(LL(1) \) property.
Left Factoring

Graphically

becomes ...

No basis for choice

Word determines correct choice
Question

By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the $LL(1)$ condition? (and can be parsed predictively with a single token lookahead?)

Answer

Given a CFG that doesn't meet the $LL(1)$ condition, it is undecidable whether or not an equivalent $LL(1)$ grammar exists.

Example

$\{a^n 0 b^n \mid n \geq 1\} \cup \{a^n 1 b^{2n} \mid n \geq 1\}$ has no $LL(1)$ grammar
Language that Cannot Be LL(1)

Example

\{a^n 0 b^n \mid n \geq 1\} \cup \{a^n 1 b^{2n} \mid n \geq 1\} has no LL(1) grammar

\[
G \rightarrow aAb \\
\mid aBbb \\
A \rightarrow aAb \\
\mid 0 \\
B \rightarrow aBbb \\
\mid 1
\]

Problem: need an unbounded number of a characters before you can determine whether you are in the A group or the B group.
Recursive Descent (Summary)

1. Build FIRST (and FOLLOW) sets
2. Massage grammar to have $LL(1)$ condition
 a. Remove left recursion
 b. Left factor it
3. Define a procedure for each non-terminal
 a. Implement a case for each right-hand side
 b. Call procedures as needed for non-terminals
4. Add extra code, as needed
 a. Perform context-sensitive checking
 b. Build an IR to record the code

Can we automate this process?
FIRST and FOLLOW Sets

FIRST(α)

For some $\alpha \in T \cup NT$, define $\text{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α.

That is, $x \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* x \gamma$, for some γ.

FOLLOW(α)

For some $\alpha \in NT$, define $\text{FOLLOW}(\alpha)$ as the set of symbols that can occur immediately after α in a valid sentence.

$\text{FOLLOW}(S) = \{\text{EOF}\}$, where S is the start symbol.

To build FIRST sets, we need FOLLOW sets ...
 Computing FOLLOW Sets

\[
\text{FOLLOW}(S) \leftarrow \{\text{EOF}\}
\]

for each \(A \in \text{NT}, \text{FOLLOW}(A) \leftarrow \emptyset\)

while (FOLLOW sets are still changing)

\(\quad\) for each \(p \in \text{P}, \text{of the form } A \rightarrow \beta_1\beta_2 \ldots \beta_k\)

\(\quad\) \(\text{FOLLOW}(\beta_k) \leftarrow \text{FOLLOW}(\beta_k) \cup \text{FOLLOW}(A)\)

\(\quad\) \(\text{TRAILER} \leftarrow \text{FOLLOW}(A)\)

\(\quad\) for \(i \leftarrow k \) down to 2

\(\quad\) if \(\varepsilon \in \text{FIRST}(\beta_i)\) then

\(\quad\) \(\text{FOLLOW}(\beta_{i-1}) \leftarrow \text{FOLLOW}(\beta_{i-1}) \cup \{\text{FIRST}(\beta_i) - \{\varepsilon\}\}\)

\(\quad\) \(\cup \text{TRAILER}\)

\(\quad\) else

\(\quad\) \(\text{FOLLOW}(\beta_{i-1}) \leftarrow \text{FOLLOW}(\beta_{i-1}) \cup \text{FIRST}(\beta_i)\)

\(\quad\) \(\text{TRAILER} \leftarrow \emptyset\)
Computing FIRST Sets

for each \(x \in T \), \(\text{FIRST}(x) \leftarrow \{ x \} \)
for each \(A \in NT \), \(\text{FIRST}(A) \leftarrow \emptyset \)

while (FIRST sets are still changing)

for each \(p \in P \), of the form \(A \rightarrow \beta \),

if \(\beta \) is \(\epsilon \) then

\(\text{FIRST}(A) \leftarrow \text{FIRST}(A) \cup \{ \epsilon \} \)

else if \(\beta \) is \(B_1 B_2 \ldots B_k \) then begin

\(\text{FIRST}(A) \leftarrow \text{FIRST}(A) \cup (\text{FIRST}(B_1) - \{ \epsilon \}) \)

for \(i \leftarrow 1 \) to \(k-1 \) by 1 while \(\epsilon \in \text{FIRST}(B_i) \)

\(\text{FIRST}(A) \leftarrow \text{FIRST}(A) \cup (\text{FIRST}(B_{i+1}) - \{ \epsilon \}) \)

if \(i = k-1 \) and \(\epsilon \in \text{FIRST}(B_k) \) then \(\text{FIRST}(A) \leftarrow \text{FIRST}(A) \cup \{ \epsilon \} \)

end

for each \(A \in NT \)

if \(\epsilon \in \text{FIRST}(A) \) then

\(\text{FIRST}(A) \leftarrow \text{FIRST}(A) \cup \text{FOLLOW}(A) \)
Building Top-down Parsers

Given an $LL(1)$ grammar, and its FIRST & FOLLOW sets ...

- Emit a routine for each non-terminal
 → Nest of if-then-else statements to check alternate rhs’s
 → Each returns true on success and throws an error on false
 → Simple, working (, perhaps ugly,) code

- This automatically constructs a recursive-descent parser

Improving matters

- Nest of if-then-else statements may be slow
 → Good case statement implementation would be better

- What about a table to encode the options?
 → Interpret the table with a skeleton, as we did in scanning

I don’t know of a system that does this ...
Building Top-down Parsers

Strategy
• Encode knowledge in a table
• Use a standard "skeleton" parser to interpret the table

Example
• The non-terminal Factor has three expansions
 → (Expr) or Identifier or Number
• Table might look like:

<table>
<thead>
<tr>
<th>⊥</th>
<th>+</th>
<th>-</th>
<th>*</th>
<th>/</th>
<th>Id.</th>
<th>Num.</th>
<th>EOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>11</td>
<td>--</td>
</tr>
</tbody>
</table>

Terminal Symbols

Non-terminal Symbols

Error on `+`
Reduce by rule 10 on `+`
Building Top Down Parsers

Building the complete table

- Need a row for every NT & a column for every T
- Need a table-driven interpreter for the table
LL(1) Skeleton Parser

`token ← next_token()`
push EOF onto Stack
push the start symbol, `S`, onto Stack
`TOS ← top of Stack`

loop forever
if TOS = EOF and token = EOF then
 break & report success
else if TOS is a terminal then
 if TOS matches token then
 pop Stack // recognized TOS
 token ← next_token()
 else report error looking for TOS
else // TOS is a non-terminal
 if TABLE[TOS,token] is $A \rightarrow B_1 B_2 \ldots B_k$ then
 pop Stack // get rid of A
 push $B_k, B_{k-1}, \ldots, B_1$ // in that order
 else report error expanding TOS

TOS ← top of Stack
Building Top Down Parsers

Building the complete table

• Need a row for every NT & a column for every T
• Need an algorithm to build the table

Filling in $\text{TABLE}[X,y]$, $X \in NT$, $y \in T$

1. entry is the rule $X \rightarrow \beta$, if $y \in \text{FIRST}(\beta)$
2. entry is the rule $X \rightarrow \varepsilon$ if $y \in \text{FOLLOW}(X)$ and $X \rightarrow \varepsilon \in G$
3. entry is error if neither 1 nor 2 define it

If any entry is defined multiple times, G is not $LL(1)$

This is the $LL(1)$ table construction algorithm
Extra Slides Start Here
Recursive Descent in Object-Oriented Languages

- Shortcomings of Recursive Descent
 - Too procedural
 - No convenient way to build parse tree

- Solution
 - Associate a class with each non-terminal symbol
 - Allocated object contains pointer to the parse tree

```cpp
Class NonTerminal {
  public:
    NonTerminal(Scanner & scnr) { s = &scnr; tree = NULL; }
    virtual ~NonTerminal() { }
    virtual bool isPresent() = 0;
    TreeNode * abSynTree() { return tree; }

  protected:
    Scanner * s;
    TreeNode * tree;
}
```
Non-terminal Classes

Class Expr : public NonTerminal {
public:
 Expr(Scanner & scnr) : NonTerminal(scnr) { }
 virtual bool isPresent();
}

Class EPrime : public NonTerminal {
public:
 EPrime(Scanner & scnr, TreeNode * p) :
 NonTerminal(scnr) { exprSofar = p; }
 virtual bool isPresent();
protected:
 TreeNode * exprSofar;
}

... // definitions for Term and TPrime

Class Factor : public NonTerminal {
public:
 Factor(Scanner & scnr) : NonTerminal(scnr) { }
 virtual bool isPresent();
}
bool Expr::isPresent() {
 Term * operand1 = new Term(*s);
 if (!operand1->isPresent()) return FALSE;

 Eprime * operand2 = new EPrime(*s, NULL);
 if (!operand2->isPresent()) // do nothing;

 return TRUE;
}
bool EPrime::isPresent() {
 token_type op = s->nextToken();
 if (op == PLUS || op == MINUS) {
 s->advance();
 Term * operand2 = new Term(*s);
 if (!operand2->isPresent()) throw SyntaxError(*s);
 EPrime * operand3 = new EPrime(*s, NULL);
 if (operand3->isPresent()); //do nothing
 return TRUE;
 } else return FALSE;
}
bool Expr::isPresent() { // with semantic processing

 Term * operand1 = new Term(*s);
 if (!operand1->isPresent()) return FALSE;
 tree = operand1->abSynTree();

 EPrime * operand2 = new EPrime(*s, tree);
 if (operand2->isPresent())
 tree = operand2->absSynTree();

 // here tree is either the tree for the Term
 // or the tree for Term followed by EPrime
 return TRUE;
}
bool EPrime::isPresent() {
 // with semantic processing
 token_type op = s->nextToken();
 if (op == PLUS || op == MINUS) {
 s->advance();

 Term * operand2 = new Term(*s);
 if (!operand2->isPresent()) throw SyntaxError(*s);

 TreeNode * t2 = operand2->absSynTree();
 tree = new TreeNode(op, exprSofar, t2);

 EPrime * operand3 = new EPrime(*s, tree);
 if (operand3->isPresent())
 tree = operand3->absSynTree();
 return TRUE;
 }
 else return FALSE;
}
bool Factor::isPresent() { // with semantic processing
 token_type op = s->nextToken();

 if (op == IDENTIFIER | op == NUMBER) {
 tree = new TreeNode(op, s->tokenValue());
 s->advance();
 return TRUE;
 }
 else if (op == LPAREN) {
 s->advance();
 Expr * operand = new Expr(*s);
 if (!operand->isPresent()) throw SyntaxError(*s);
 if (s->nextToken() != RPAREN) throw SyntaxError(*s);
 s->advance();
 tree = operand->absSynTree();
 return TRUE;
 }
 else return FALSE;
}