Deep Neural Net Approaches for Natural Language Processing

Gary Geunbae Lee
Dept of CSE/AIGS
POSTECH
A few applications of HLT/NLP/CL

- Spelling correction, grammar checking ...(language learning and evaluation e.g. TOEFL essay score)
- Better search engines
- Information extraction, gisting
- Psychotherapy; chat bot, etc.
- Speech recognition (and text-to-speech)
- Dialogue systems
- Machine translation; speech translation
- Trans-lingual summarization, detection, extraction ...
Question Answering: IBM’s Watson

Won Jeopardy on February 16, 2011!

WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPALITIES OF WALLACHIA AND MOLDOVIA” INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL

Bram Stoker
Hi Dan, we’ve now scheduled the curriculum meeting.

It will be in Gates 159 tomorrow from 10:00-11:30.

-Chris
nice and compact to carry!

since the camera is small and light, I won't need to carry around those heavy, bulky professional cameras either!

the camera feels flimsy, is plastic and very light in weight you have to be very delicate in the handling of this camera
Machine Translation

- Helping human translators

Fully automatic

Enter Source Text:

这不过是一个时间的问题。

Translation from Stanford’s Phrasal:

This is only a matter of time.
Language Technology

Spam detection
- Let’s go to Agra!
- Buy V1AGRA ...

Part-of-speech (POS) tagging
- ADJ ADJ NOUN VERB ADV
 - Colorless green ideas sleep furiously.

Named entity recognition (NER)
- PERSON ORG LOC
 - Einstein met with UN officials in Princeton

Sentiment analysis
- Best roast chicken in San Francisco!
- The waiter ignored us for 20 minutes.

Coreference resolution
- Carter told Mubarak he shouldn’t run again.

Word sense disambiguation (WSD)
- I need new batteries for my mouse.

Parsing
- I can see Alcatraz from the window!

Machine translation (MT)
- 第13届上海国际电影节开幕...
- The 13th Shanghai International Film Festival...

Information extraction (IE)
- You’re invited to our dinner party, Friday May 27 at 8:30

Question answering (QA)
- Q. How effective is ibuprofen in reducing fever in patients with acute febrile illness?

Paraphrase
- XYZ acquired ABC yesterday
- ABC has been taken over by XYZ

Summarization
- The Dow Jones is up
- The S&P500 jumped
- Housing prices rose
- Economy is good

Dialog
- Where is Citizen Kane playing in SF?
 - Castro Theatre at 7:30. Do you want a ticket?
Levels of Language

- **Phonetics/phonology/morphology:** what words (or subwords) are we dealing with?
- **Syntax:** What phrases are we dealing with? Which words modify one another?
- **Semantics:** What’s the literal meaning?
- **Pragmatics:** What should you conclude from the fact that I said something? How should you react?
What’s hard - ambiguities, ambiguities, all different levels of ambiguities

John stopped at the donut store on his way home from work. He thought a coffee was good every few hours. But it turned out to be too expensive there. [from J. Eisner]

- donut: To get a donut (doughnut; spare tire) for his car?
- Donut store: store where donuts shop? or is run by donuts? or looks like a big donut? or made of donut?
- From work: Well, actually, he stopped there from hunger and exhaustion, not just from work.
- Every few hours: That’s how often he thought it? Or that’s for coffee?
- it: the particular coffee that was good every few hours? the donut store? the situation
- Too expensive: too expensive for what? what are we supposed to conclude about what John did?
Why else is natural language understanding difficult?

non-standard English

Great job @justinbieber! Were SOO PROUD of what you've accomplished! U taught us 2 #neversaynever & you yourself should never give up either♥

segmentation issues

the New York-New Haven Railroad

idioms

dark horse
gerget cold feet
lose face
throw in the towel

neologisms

unfriend
Retweet
bromance

world knowledge

Mary and Sue are sisters.
Mary and Sue are mothers.

tricky entity names

Where is A Bug’s Life playing ...
Let It Be was recorded ...
... a mutation on the for gene ...

But that’s what makes it fun!
Imagine:

- Each sentence $W = \{ w_1, w_2, ..., w_n \}$ gets a probability $P(W|X)$ in a context X (think of it in the intuitive sense for now).

- For every possible context X, sort all the imaginable sentences W according to $P(W|X)$:

Ideal situation:

- Best sentence (most probable in context X)
- NB: same for interpretation

```
\begin{align*}
\text{P}(W) & \quad \text{“ungrammatical” sentences} \\
\end{align*}
```
Artificial Neural Networks (ANN)

Dendrites

Terminal Branches of Axon

Activation Function

Axon
Layered Networks

\[\sum_{i,j} = f(w_x) \]

\[y = f(w_x + w_2 x + w_3 x + \cdots + w_m x_m) \]

Output: \[y = f(\sum_j w^l_j x_j) \]
Deep learning Innovation

- Combining Feature Learning and Classification as Unified Framework (※ Learning what to learn, how to learn)

Feature learning aspect of DNN based Image Classification
Vanilla recurrent neural networks (RNNs)

- RNNs have connections from the outputs of previous time steps to inputs of next time steps

- For sequential data, a RNN usually computes hidden state h_t from the previous hidden state h_{t-1} and the input x_t
 - $h_t = \sigma(W_h h_{t-1} + W_x x_t + b)$
Vanishing gradient problem

- \(h_t = \sigma(W_h h_{t-1} + W_x x_t + b) \)

- Let’s assume \(\sigma \) is the identity function

\[
\frac{\partial J^{(i)}(\theta)}{\partial h^{(j)}} = \frac{\partial J^{(i)}(\theta)}{\partial h^{(i)}} \prod_{j < t \leq i} \frac{\partial h^{(t)}}{\partial h^{(t-1)}} = \frac{\partial J^{(i)}(\theta)}{\partial h^{(i)}} \prod_{j < t \leq i} W_h = \frac{\partial J^{(i)}(\theta)}{\partial h^{(i)}} W_h^\ell
\]

If all \(\frac{\partial h_t}{\partial h_{t-1}} < 1 \Rightarrow \frac{\partial J_t}{\partial h^1} \approx 0 \)
Long short-term memory networks (LSTMs)

- LSTMs explicitly keep and update cell memory $c(t)$ by
 - Removing the previous cell content $c(t-1)$ by multiplying it with $f(t)$
 - Adding the new cell content $\tilde{c}(t)$ multiplied by $i(t)$
- LSTMs produce output $h(t) = o(t) \circ \tanh c(t)$

\[
\begin{align*}
 f(t) &= \sigma \left(W_f h(t-1) + U_f x(t) + b_f \right) \\
 i(t) &= \sigma \left(W_i h(t-1) + U_i x(t) + b_i \right) \\
 o(t) &= \sigma \left(W_o h(t-1) + U_o x(t) + b_o \right) \\
 \tilde{c}(t) &= \tanh \left(W_c h(t-1) + U_c x(t) + b_c \right) \\
 c(t) &= f(t) \circ c(t-1) + i(t) \circ \tilde{c}(t) \\
 h(t) &= o(t) \circ \tanh c(t)
\end{align*}
\]
Gated recurrent units (GRUs)

- GRUs keeps and update $h(t)$ by two gates:
 - Update gate $u(t)$ decides
 - How much the old hidden representation $h(t)$ is removed
 - How much the new hidden representation $\tilde{h}(t)$ is added
 - Reset gate $r(t)$ decides how much old representation $h(t)$ is needed to compute new representation $\tilde{h}(t)$

- GRUs also use less number of gates and have smaller parameters than LSTMs

\[
\begin{align*}
 u(t) &= \sigma \left(W_u h^{(t-1)} + U_u x^{(t)} + b_u \right) \\
 r(t) &= \sigma \left(W_r h^{(t-1)} + U_r x^{(t)} + b_r \right) \\
 \tilde{h}(t) &= \tanh \left(W_h (r(t) \circ h^{(t-1)}) + U_h x^{(t)} + b_h \right) \\
 h(t) &= (1 - u(t)) \circ h^{(t-1)} + u(t) \circ \tilde{h}(t)
\end{align*}
\]
Bidirectional Multi-Layer RNNs

the movie was terribly exciting!
Parallel computing for Deep Learning

- History of parallel/distributed systems for Deep Learning computing

<table>
<thead>
<tr>
<th>Year</th>
<th>System</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>'12.6</td>
<td>Google/Stanford</td>
<td>16K CPUs</td>
</tr>
<tr>
<td>'12.10</td>
<td>U. Toronto</td>
<td>2 GPUs</td>
</tr>
<tr>
<td>'13.6</td>
<td>Stanford</td>
<td>12 GPUs</td>
</tr>
<tr>
<td>'14.10</td>
<td>Google</td>
<td>>16K CPUs</td>
</tr>
<tr>
<td>'15.1</td>
<td>Baidu</td>
<td>144 GPUs</td>
</tr>
</tbody>
</table>

- Google taps 16k computers to look for cats—for Science!
- Univ. of Toronto uses 2 GPUs for 1.2M training Images for 1000 classes Image classification (※ ImageNet Large Scale Visual Recognition Challenge)
- Stanford uses 12 GPUs for Large-scale Video Classification With Convolutional Neural Networks (※ 10M Youtube video)
- Baidu’s Artificial Intelligence Supercomputer Beats Google at Image Recognition
Deep Learning for NLP
Word Vector

- Represent words as vectors

\[
\text{expect} = \begin{pmatrix}
0.286 \\
0.792 \\
-0.177 \\
-0.107 \\
0.109 \\
-0.542 \\
0.349 \\
0.271 \\
0.487
\end{pmatrix}
\]
Word Vector

- **Distributional semantics**: A word’s meaning is given by the words that frequently appear close-by.

- *“You shall know a word by the company it keeps”*

- **Word2vec objective function (skip-grams)**

\[
J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log P(w_{t+j} | w_t; \theta)
\]
Contextual word embedding

- A word’s **contextual embedding** must consider its context

\[\epsilon(\text{plays}) \]

```
glove
```

\[\epsilon(\text{plays} \mid \text{the actor _ a show}) \]

```
some contextual method
```

```
the actor plays a show
```
ELMo: Embeddings from Language Model

- Multi-layer bidirectional LSTM language model

\[R_k = \{ x_k^{LM}, \overrightarrow{h}_{k,j}^{LM}, \overleftarrow{h}_{k,j}^{LM} | j = 1, \ldots, L \} \]
\[= \{ h_{k,j}^{LM} | j = 0, \ldots, L \}, \]
\[h_{k,0}^{LM} = x_k^{LM} \quad \text{(token representation; GloVe)} \]
\[h_{k,j}^{LM} = \overrightarrow{h}_{k,j}^{LM}, \overleftarrow{h}_{k,j}^{LM} \quad \text{(LSTM state)} \]

\[\text{ELMo}_{k}^{\text{task}} = E(R_k; \Theta^{\text{task}}) = \gamma^{\text{task}} \sum_{j=0}^{L} s_j^{\text{task}} h_{k,j}^{LM} \]

\[\gamma^{\text{task}}: \text{scale (hyper-parameter)} \]
\[s_j^{\text{task}}: \text{weight (learned)} \]
ELMo for MRC

- ELMo as a word embedding

Diagram showing the layers and components of the ELMo for MRC model.
Transformer

- Parallel self-attention
 - Looks at self, and determines where to focus

\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}} \right)V
\]

Q,K,V – vectors for every word, output attention summed up; head means different Q,K,V vector with different weights

Vaswani, Ashish, et al. "Attention is all you need." NIPS 2017
BERT: Bidirectional Encoder Representations from Transformers

• Training 1. Masked words prediction
 • 15% of words are [MASK]ed

*GELU: Gaussian error linear unit
• Training 2. Next sentence prediction
 • To understand texts more than a sentence

Input = [CLS] the man went to [MASK] store [SEP]
 he bought a gallon [MASK] milk [SEP]
Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]
 penguin [MASK] are flight #less birds [SEP]
Label = NotNext
BERT: Bidirectional Encoder Representations from Transformers

- BERT as universal pre-trained model for NLP
 - BERT requires minimal additional layers and fine-tuning

*GLUE benchmark task

In pre-training, optimize $L_1(u)$

u: Unlabeled dataset

Θ: Model parameters

In fine-tuning, optimize $L_3(c)$

c: Labeled dataset

λ: Hyper-parameter weight

*GPT-2/3: zero/few-shot learning
Sequence labeling

- Sequence labeling is the task of assigning a categorical label to each member of an observed sequences.

Examples of sequence labeling:

- **Part-of-speech tagging** labels each word with a grammatical category.
 - e.g. The | trees | are | ... → DT (determiner) | NNS (plural noun) | VBP (plural verb)

- **Named entity recognition** locates and classifies named entity in text. It can be tackled by labeling each word with a named entity category.
 - e.g. Barack | Obama | said | ... → B-PERSON | I-PERSON | O | ...
Bi-directional LSTM-CNNs-CRF

- **Bi-directional LSTMs** encode word embeddings and character representations.

- **Conditional random fields** compute the distribution of output sequence:
 - Viterbi algorithm is applied during training and decoding.
 - The objective is the negative log-likelihood of the output sequence distribution.

\[
p(y|z; W, b) = \frac{\prod_{i=1}^{n} \psi_i(y_{i-1}, y_i, z)}{\sum_{y' \in \mathcal{Y}(z)} \prod_{i=1}^{n} \psi_i(y'_{i-1}, y'_i, z)}
\]

- \textbf{z}: input sequence
- \textbf{y}: output sequence
- \(\mathcal{Y}(z)\): a set of all possible output sequences when given the input sequence \textbf{z}

[Ma 2016]
Seq2Seq NMT via fixed-length representations

- Encoder RNN compresses input sequence into a fixed-length representation
- Decoder RNN produces output sequence from the representation
 - Each produced output token is fed into the next RNN’s input

[Sutskever 2014]
S2S NMT with attention mechanism

• It’s hard to encode all the information of an input sequence into a fixed-length representation

• We can focus important parts of input sequences for each decoding step by attention mechanism

[Bahdanau 2015]
Dependency parsing

• Dependency parsing is the task of extracting **dependencies** between **head** and **dependent** words from a sentence

```
ROOT    He    has    good    control .
PRP     VBZ   JJ     NN     .
```

• A dependency is the arrow from a head to a dependent with a grammatical type called **relation** (e.g. nsubj)

• Dependencies show which words depend on (modify or are arguments of) which other words.
Neural transition-based dependency parsing

- Extract features from Stack and Buffer
 - lc/rc: leftmost/rightmost children
- Classify an action by neural networks
 - The objective is the negative log-likelihood of the action distribution

Feature extraction

\[p = \text{softmax}(W_2 h) \]

\[h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3 \]

Input layer: \([x^w, x^t, x^l]\)

Configuration

Stack

Buffer

POS tags

arc labels

Feedforward neural network-based action classifier

[Chen 2014]
Semantic parsing (weakly supervised)

- Semantic parsing is a task of mapping natural language to programs.
- We aim to develop semantic parsers without direct supervision on programs.

Program

\[
\text{Program} = \text{map} (\text{argmax} (\text{filter all-rows} (\lambda (x) (= (\text{string:country} x) "greece"))) \text{index}) \text{number:year})
\]

Natural language

"Greece held its last Summer Olympics in which year?"

Context

<table>
<thead>
<tr>
<th>Year</th>
<th>City</th>
<th>Country</th>
<th>Nations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1896</td>
<td>Athens</td>
<td>Greece</td>
<td>14</td>
</tr>
<tr>
<td>1900</td>
<td>Paris</td>
<td>France</td>
<td>24</td>
</tr>
<tr>
<td>1904</td>
<td>St. Louis</td>
<td>USA</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2004</td>
<td>Athens</td>
<td>Greece</td>
<td>201</td>
</tr>
<tr>
<td>2008</td>
<td>Beijing</td>
<td>China</td>
<td>204</td>
</tr>
<tr>
<td>2012</td>
<td>London</td>
<td>UK</td>
<td>204</td>
</tr>
</tbody>
</table>

Denotation

2004
• Top-down neural semantic parsing
 • Neural net generate derivation actions
 • Type system reduce search space (entity matching)

Neural Semantic Parsing with Type Constraints for Semi-Structured Tables, Krishnamurthy et al., EMNLP 2017

Iterative Search for Weakly Supervised Semantic Parsing, Dasigi et al., NAACL 2019
code generation by semantic parsing

Abstract Syntax Description Language (ASDL) for Python

\[
\begin{align*}
\text{stmt} & \mapsto \text{Expr} (\text{expr value}) \\
\text{expr} & \mapsto \text{Call} (\text{expr func}, \text{expr* args}, \\
& \quad \text{keyword* keywords}) \\
\text{keyword} & \mapsto \text{keyword} \\
\text{Name} & \mapsto \text{str} \\
\text{GenToken} & \mapsto \text{str} \\
\text{Action Flow} & \mapsto \text{Parent Feeding} \\
\text{Apply Rule} & \mapsto \text{Generate Token} \\
\text{GenToken with Copy} & \mapsto \text{str (string s)}
\end{align*}
\]

Abstract Syntax Description Language for SQL

\[
\begin{align*}
\text{stmt} & = \text{Select} (\text{agg_op? agg, idx column_idx, }
\quad \text{cond_expr* conditions}) \\
\text{cond_expr} & = \text{Condition} (\text{cmp_op op, idx column_idx, }
\quad \text{string value}) \\
\text{agg_op} & = \text{Max | Min | Count | Sum | Avg} \\
\text{cmp_op} & = \text{Equal | GreaterThan | LessThan | Other}
\end{align*}
\]

[Yin 2017, Yin 2018, Rabinovich 2017]
Sentiment Analysis

- XLNet based classification

XLNet = GPT (AR)+BERT(AE): permutation AR (Transformer-XL)
ConvNet for NLP

RNN for NLP - softmax is often only calculated at the last step

CNN for NLP
ConvNet for NLP

- CNN architecture for sentence classification

Text classification by CNN+LSTM

- CNN: advantages in selecting good features
- LSTM networks: good abilities of learning sequential data.
Style-based fake news detection
Wording, writing style

MRC-QA: SQuAD2.0

• Unanswerable question (negative example)
 • Relevant to the topic
 • Existence of plausible answers

Article: Endangered Species Act
Paragraph: “...Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised.”

Question 1: “Which laws faced significant opposition?”
Plausible Answer: later laws

Question 2: “What was the name of the 1937 treaty?”
Plausible Answer: Bald Eagle Protection Act

Figure 1: Two unanswerable questions written by crowdworkers, along with plausible (but incorrect) answers. Relevant keywords are shown in blue.
SQuAD2.0

- BERT – no answer prediction

answerable case

unanswerable case
• multi-hop(two-hop) reasoning
• multiple supporting doc
• sentence-level supporting facts

Framework

- **RoBERTa Encoder**
 - Question and passage tokens are encoded by large RoBERTa encoder (max sequence: 512).

- **Mean pooling**
 - *Question embedding used to direct the reasoning in graph reasoning.*

- **Question Directed Graph Attention Network**
 - Relation information between numbers and entities in the passages is updated through graph reasoning (self-attention mechanism).

- **Answer type prediction**
 - The answers to the questions are categorized into 5 types.

- **Single span type prediction**
 - Start and end probability for each token is computed.

- **Multiple span type prediction**
 - Each token is classified by I,O tagging method, and multiple tokens classified as I are determined as answers.

- **Classification for count type prediction**
 - 10 class classification problem (0~9), which covers about 97% counting problem in the DROP dataset.

- **Classification for add/sub type prediction**
 - only addition and subtraction operations are involved, each number is classified into one of (-1, 0, +1)
Architecture

*Conditionally adaptive multi-task learning

CA-MTL (2020)

26 tasks: 9 GLUE tasks, 8 Super-GLUE Tasks, 6 MRQA tasks, etc - all tasks are trained jointly and evaluated from a single model

*9 GLUE tasks
MNLI: multi-genre natural language inference (entail, contradict, neutral)
QQP: quora question pairs (semantic equivalence)
QNLI: question answering NLI (context sentence contains answer to the question)
STT-2: stanford sentiment treebank
cola: corpus of linguistic acceptability (grammaticality check)
sts-b: semantic textual similarity benchmark
mrpc: microsoft research paraphrase corpus (semantic equivalence)
rte: recognizing textual entailment (entail, not-entail)
WNLI: The Winograd Schema Challenge (common sense pronoun resolution task)

Figure 1: CA-MTL_{BASE} architecture first uses our uncertainty-based sampling algorithm to choose task data for batching. Then, the input tokens go through a frozen embedding layer, followed by a Conditional Alignment layer. The rest contains frozen BERT-based Transformer layers and trainable adapters.
Grammatical Error Correction (GEC)

- Neural machine translation approaches
 - Transformer and copy mechanism
 - 0.5880 $F_{0.5}$ score

\[p = (1-\text{acopy})^*\text{pgen} + \text{acopy}^*\text{pcopy} \]

make the model do more copying when the input sentence looks entirely correct

Figure 1: Copy-Augmented Architecture.

Zhao et al., NAACL 2019
Multi-domain Task-oriented Dialogue

- The system interacts with user to help the user achieve his/her goal
 - e.g. Restaurant reservation, hotel reservation...
- Specific domains & specific goals
 - ↔ Open domain (chit-chat)
- Multi-turns
- User goals are not limited to just one domain

To book a hotel
To book a restaurant near the hotel
To book a taxi from the hotel to the restaurant
Dataset: MultiWOZ

• Standard benchmark dataset for end-to-end task-oriented dialogue systems
 • Multi-domain dataset for task-oriented dialog system
 • Virtual conversations between a tourist and a guide in Cambridge
 • 7 domains: Hotel, restaurant, attraction, train, taxi, police, hospital
 • Number of dialog: 10,000 / Avg. number of turns per dialog: 13

• Evaluation in MultiWOZ
 • Inform rate
 • How many entries provided by the system meet goals?
 • Success rate
 • How many user requests are provided by the system?
 • BLEU
 • Similarity between generated response and true response in the dataset
User: I am planning a trip to town and want to sight see a bit.

System: There are 79 attractions in the city. Do you have a specific type of attraction?

User: I’d like a architecture.

System: How about [All Saints Church]? It has fantastic architecture and free entrance.

User: Could I get the address? I would also like an expensive place to eat around it.

System: The address is Jesus Lane. What type of food would you like to eat?

User: I'm in the mood for Turkish food.

System: Anatolia is an expensive Turkish restaurant in the city centre.

User: Can I have the phone number?

System: The phone number is 01223362372.

User: Thank you!

System: You're welcome, feel free to contact us about anything else you need.
traditional pipeline architecture

User

“Where do you want to eat?”

Natural Language Understanding

“I want to find a Chinese restaurant.”

Inform (cuisine=“Chinese”)

Request (location)

Dialog State

Dialog Manager

Dialog Policy

Knowledge Base

Query
Existing model: SOLOIST

- An auto-regressive model for training (Language modeling)
- Task 1: Predict dialogue state (slot-value)
- Task 2: Predict system response
- Task 3 (for Auxiliary loss)
 - Replace dialogue state or system response in input sequence into **negative samples** randomly
 - Then, predict input sequence is negative sample or not (binary classification)
- Jointly train by sum of 3 losses
DAMD (Domain Aware Multi-Decoder)
Architecture w/ domain state tracking

- NLU module is shared for DST, POL, and NLG
- Darker blocks mean previous turn
- DB result contains the number of matched entries for each domain

*for POL GRU training use two level: use CE loss for Supervised Learning (SL); use reward (success rate and correct system action rate) for 2nd level Reinforcement Learning (RL) training
End-to-end ASR

Frontend (Preprocessing) STFT, MEL

Audio Inputs

Short-Time Fourier Transform (STFT)

mel-spectrogram

Transformer Encoder

Speech Representation

Transformer Decoder (Attention)

CTC

Beam Search

Text Outputs

*Connectionist Temporal Classification (CTC)

mel scale: a perceptual scale of pitches judged by listeners to be equal in distance (log of frequency Hz)
Tacotron2: Seq2seq with attention RNN + modified WaveNet

*location-sensitive attention: mitigating potential failure modes where some subsequences are repeated or ignored by the decoder
*Auto-regressive decoder to generate mel spectrogram frame by frame; Previous frame input to pre-net & post-net (for residual)
*stop token to stop generation

*wavenet: invert the mel spectrogram feature representation into time-domain
waveform samples (10 component mixture of logistic distributions (MoL) to generate 16-bit samples at 24 kHz)
MelGan

Change WaveNet vocoder to:
- MelGan for faster inference

Figure 1: MelGAN model architecture. Each upsampling layer is a transposed convolution with kernel-size being twice of the stride (which is same as the upsampling ratio for the layer). 256x upsampling is done in 4 stages of 8x, 8x, 2x and 2x upsampling. Each residual dilated convolution stack has three layers with dilation 1, 3 and 9 with kernel-size 3, having a total receptive field of 27 timesteps. We use leaky-relu for activation. Each discriminator block has 4 strided convolution with stride 4. Further details can be found in the Appendix 6.
Dialog System for Counseling (TOD → Open-ended)

- Paraphrasing
- Reflect Feeling
- Correct Information
- Logical Answering

Empathy

Motivating

Questioning
- Show Interest

Sensibleness

Attending

Listening
- Memorizing
User: How are things?

Meena: They’re good. How about you?

User: I’m trying to decide what to watch

Meena: What are some of your favorite shows?

User: I like the Good Place

Meena: I haven’t watched that. My favorite shows are Supernatural, and Star trek: TNG.

User: What is TNG?

Meena: The Next Generation

Frederick Parker-Rhodes (21 March 1914 - 21 November 1987) was an English linguist, plant pathologist, computer scientist, mathematician, mystic, and mycologist.
Switch-GPT2 (Chen et al., 2020)

\[L = L_c + \lambda \sum_{w_j \in m, m \in \{V_i\}} (1 - p_{copy}^j) \]

Lc original loss, Vi slot-value, wj target word in slot-value for copy
- NLP enjoys rapid progress in the last 10 years due to deep learning.
- Even more rapid progress in the last few years due to larger models, better usage of unlabeled data
- NLP is reaching the point of having big social impact, making issues like bias and security increasingly important.
- Big model, big computation resources, huge training times are problematic, need to focus more light way of doing NLP (even embedded model)