Automatic Speech Recognition
The Noisy Channel Model

- **Automatic speech recognition** (ASR) is a process by which an acoustic speech signal is converted into a set of words [Rabiner et al., 1993]

- **The noisy channel model** [Lee et al., 1996]
 - Acoustic input considered a noisy version of a source sentence

![Diagram of the Noisy Channel Model]

 버스 정류장이 어디에 있나요?

 버스 정류장이 어디에 있나요?
The Noisy Channel Model

- What is the most likely sentence out of all sentences in the language L given some acoustic input O?
- Treat acoustic input O as sequence of individual observations
 - $O = o_1, o_2, o_3, ..., o_t$
- Define a sentence as a sequence of words:
 - $W = w_1, w_2, w_3, ..., w_n$

$$
\hat{W} = \arg \max_{W \in L} P(W | O)
$$

Bayes rule

$$
\hat{W} = \arg \max_{W \in L} P(O | W)P(W) / P(O)
$$

Golden rule

$$
\hat{W} = \arg \max_{W \in L} P(O | W)P(W)
$$

IlVB-2006 Tutorial
Speech Recognition Architecture Meets Noisy Channel

\[\hat{W} = \arg \max_{W \in L} P(O | W) P(W) \]

Speech Signals \(O \) → Feature Extraction \(\rightarrow \) Decoding \(\rightarrow \) Word Sequence \(W \)

Speech DB → HMM Estimation → Decoding

Text Corpora → G2P → Pronunciation Model

- Acoustic Model
- Pronunciation Model
- Language Model

버스 정류장이 어디에 있나요?
Feature Extraction

- **The Mel-Frequency Cepstrum Coefficients (MFCC) is a popular choice** [Paliwal, 1992]
 - Frame size: 25ms / Frame rate: 10ms
 - 39 feature per 10ms frame
 - Absolute: Log Frame Energy (1) and MFCCs (12)
 - Delta: First-order derivatives of the 13 absolute coefficients
 - Delta-Delta: Second-order derivatives of the 13 absolute coefficients
Acoustic Model

- Provide \(P(O|Q) = P(\text{features}|\text{phone}) \)
- Modeling Units [Bahl et al., 1986]
 - Context-independent: Phoneme
 - Context-dependent: Diphone, Triphone, Quinphone
 - \(p_L-p+p_R \): left-right context triphone
- Typical acoustic model [Juang et al., 1986]
 - Continuous-density Hidden Markov Model \(\lambda = (A, B, \pi) \)
 - Distribution: Gaussian Mixture
 \[
 b_j(x_j) = \sum_{k=1}^K c_{jk} N(x_j; \mu_{jk}, \Sigma_{jk})
 \]
 - HMM Topology: 3-state left-to-right model for each phone, 1-state for silence or pause
Pronunciation Model

- Provide $P(Q|W) = P(\text{phone}|\text{word})$
- Word Lexicon [Hazen et al., 2002]
 - Map legal phone sequences into words according to phonotactic rules
 - G2P (Grapheme to phoneme) : Generate a word lexicon automatically
 - Several word may have multiple pronunciations
- Example
 - Tomato

- $P([\text{t}][\text{ow}]) = P([\text{t}][\text{ow}]) = 0.1$
- $P([\text{t}][\text{ah}][\text{m}][\text{ey}][\text{a}][\text{t}][\text{ow}]) = 0.4$
Training

• Training process [Lee et al., 1996]

 Speech DB → Feature Extraction → Baum-Welch Re-estimation → Converged?

 HMM

 yes → End

 no → HMM

• Network for training

 Sentence HMM

 ONE TWO THREE ONE

 Word HMM

 ONE

 Phone HMM

 W
Language Model

- Provide \(P(W) \); the probability of the sentence [Beaujard et al., 1999]
 - We saw this was also used in the decoding process as the probability of transitioning from one word to another.
 - Word sequence: \(W = w_1, w_2, w_3, ..., w_n \)
 \[
P(w_1 \cdots w_n) = \prod_{i=1}^{n} P(w_i | w_1 \cdots w_{i-1})
\]
 - The problem is that we cannot reliably estimate the conditional word probabilities, \(P(w_i | w_1 \cdots w_{i-1}) \) for all words and all sequence lengths in a given language
 - n-gram Language Model
 - n-gram language models use the previous n-1 words to represent the history
 \[
P(w_i | w_1 \cdots w_{i-1}) = P(w_i | w_{i-(n-1)} \cdots w_{i-1})
\]
 - Bi-grams are easily incorporated in a viterbi search
Language Model

- Example
 - Finite State Network (FSN)
 - Context Free Grammar (CFG)
 - Bigram

\[
P(\text{에서|서울})=0.2 \quad P(\text{세시|에서})=0.5 \\
P(\text{출발|세시})=1.0 \quad P(\text{하는|출발})=0.5 \\
P(\text{출발|서울})=0.5 \quad P(\text{도착|대구})=0.9 \\
... \\
\]
Network Construction

- Expanding every word to state level, we get a search network [Demuynck et al., 1997]

![Diagram of search network with Acoustic Model, Pronunciation Model, and Language Model](image)

Acoustic Model
- Expanding every word to state level, we get a search network [Demuynck et al., 1997]

Pronunciation Model
- Expanding every word to state level, we get a search network [Demuynck et al., 1997]

Language Model
- Expanding every word to state level, we get a search network [Demuynck et al., 1997]

Search Network
- Expanding every word to state level, we get a search network [Demuynck et al., 1997]
Decoding

- Find $\hat{W} = \arg \max_{W \in L} P(W | O)$

- **Viterbi Search**: Dynamic Programming
 - Token Passing Algorithm [Young et al., 1989]

 - Initialize all states with a token with a null history and the likelihood that it’s a start state
 - For each frame a_k
 - For each token t in state s with probability $P(t)$, history H
 - For each state r
 - Add new token to s with probability $P(t) P_{s,r} P_r(a_k)$, and history $s.H$
Decoding

• Pruning [Young et al., 1996]
 – Entire search space for Viterbi search is much too large
 – Solution is to prune tokens for paths whose score is too low
 – Typical method is to use:
 – histogram: only keep at most n total hypotheses
 – beam: only keep hypotheses whose score is a fraction of best score

• N-best Hypotheses and Word Graphs
 – Keep multiple tokens and return n-best paths/scores
 – Can produce a packed word graph (lattice)

• Multiple Pass Decoding
 – Perform multiple passes, applying successively more fine-grained language models
Large Vocabulary Continuous Speech Recognition (LVCSR)

- Decoding continuous speech over large vocabulary
 - Computationally complex because of huge potential search space

- **Weighted Finite State Transducers (WFST)** [Mohri et al., 2002]
 - Efficiency in time and space
 - Word : Sentence
 - Phone : Word
 - HMM : Phone
 - State : HMM

- Dynamic Decoding
 - On-demand network constructions
 - Much less memory requirements